Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
a/
\(\left(2x-1\right)\left(3x-1\right)\left(x-2\right)\left(x-3\right)=4x^2\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(3x-1\right)\left(x-3\right)=4x^2\)
\(\Leftrightarrow\left(2x^2-5x+2\right)\left(3x^2-10x+3\right)=4x^2\)
\(\Leftrightarrow\left(6x^2-15x+6\right)\left(6x^2-20x+6\right)=24x^2\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\):
\(\left(6x+\frac{6}{x}-15\right)\left(6x+\frac{6}{x}-20\right)=24\)
Đặt \(6x+\frac{6}{x}-20=a\Rightarrow6x+\frac{6}{x}-15=a+5\)
\(\left(a+5\right)a-24=0\Leftrightarrow a^2+5a-24=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x+\frac{6}{x}-20=3\\6x+\frac{6}{x}-20=-8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}6x^2-23x+6=0\\6x^2-12x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{23\pm\sqrt{385}}{12}\\x=1\end{matrix}\right.\)
b/
\(3x^2-10x+6-\sqrt{2\left(x^4+4x^2+4-4x^2\right)}=0\)
\(\Leftrightarrow x^2-6x+2+2\left(x^2-2x+2\right)-\sqrt{2\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=0\)
\(\Leftrightarrow x^2-6x+2+\sqrt{2\left(x^2-2x+2\right)}\left(\sqrt{2\left(x^2-2x+2\right)}-\sqrt{x^2+2x+2}\right)=0\)
\(\Leftrightarrow x^2-6x+2+\sqrt{2\left(x^2-2x+2\right)}\left(\frac{x^2-6x+2}{\sqrt{2\left(x^2-2x+2\right)}+\sqrt{x^2+2x+2}}\right)=0\)
\(\Leftrightarrow\left(x^2-6x+2\right)\left(1+\frac{\sqrt{2\left(x^2-2x+2\right)}}{\sqrt{2\left(x^2-2x+2\right)}+\sqrt{x^2+2x+2}}\right)=0\)
\(\Leftrightarrow x^2-6x+2=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow\left[{}\begin{matrix}x=3+\sqrt{7}\\x=3-\sqrt{7}\end{matrix}\right.\)
\(ĐK:x\ge\frac{1}{2}\)
Biến đổi phương trình đã cho thành
\(\left(x-2\right)\left[3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)=0\left(1\right)\end{cases}}\)
Giải PT
\(\left(1\right)\Leftrightarrow3x\left(\sqrt{2x-1}+1\right)-x\left(2x-1\right)-2=0\left(2\right)\)
đặt \(\sqrt{2x-1}=t\left(zới\right)t\ge0=>x=\frac{t^2+1}{t}\)thay zô PT (2) ta đc
\(t^4-3t^3-2t^2-3t+1=0\Leftrightarrow\left(t^2+t+1\right)\left(t^2-4t+1\right)=0\Leftrightarrow t^2-4t+1=0\Leftrightarrow t=2\pm\sqrt{3}\)
từ đó tìm đc
\(x=4\pm2\sqrt{3}\left(tm\right)\)
a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
Chia cả 2 vế cho x2