Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\left(2x-1\right)\left(3x-1\right)\left(x-2\right)\left(x-3\right)=4x^2\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(3x-1\right)\left(x-3\right)=4x^2\)
\(\Leftrightarrow\left(2x^2-5x+2\right)\left(3x^2-10x+3\right)=4x^2\)
\(\Leftrightarrow\left(6x^2-15x+6\right)\left(6x^2-20x+6\right)=24x^2\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\):
\(\left(6x+\frac{6}{x}-15\right)\left(6x+\frac{6}{x}-20\right)=24\)
Đặt \(6x+\frac{6}{x}-20=a\Rightarrow6x+\frac{6}{x}-15=a+5\)
\(\left(a+5\right)a-24=0\Leftrightarrow a^2+5a-24=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x+\frac{6}{x}-20=3\\6x+\frac{6}{x}-20=-8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}6x^2-23x+6=0\\6x^2-12x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{23\pm\sqrt{385}}{12}\\x=1\end{matrix}\right.\)
b/
\(3x^2-10x+6-\sqrt{2\left(x^4+4x^2+4-4x^2\right)}=0\)
\(\Leftrightarrow x^2-6x+2+2\left(x^2-2x+2\right)-\sqrt{2\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=0\)
\(\Leftrightarrow x^2-6x+2+\sqrt{2\left(x^2-2x+2\right)}\left(\sqrt{2\left(x^2-2x+2\right)}-\sqrt{x^2+2x+2}\right)=0\)
\(\Leftrightarrow x^2-6x+2+\sqrt{2\left(x^2-2x+2\right)}\left(\frac{x^2-6x+2}{\sqrt{2\left(x^2-2x+2\right)}+\sqrt{x^2+2x+2}}\right)=0\)
\(\Leftrightarrow\left(x^2-6x+2\right)\left(1+\frac{\sqrt{2\left(x^2-2x+2\right)}}{\sqrt{2\left(x^2-2x+2\right)}+\sqrt{x^2+2x+2}}\right)=0\)
\(\Leftrightarrow x^2-6x+2=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow\left[{}\begin{matrix}x=3+\sqrt{7}\\x=3-\sqrt{7}\end{matrix}\right.\)
\(ĐK:x\ge\frac{1}{2}\)
Biến đổi phương trình đã cho thành
\(\left(x-2\right)\left[3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)=0\left(1\right)\end{cases}}\)
Giải PT
\(\left(1\right)\Leftrightarrow3x\left(\sqrt{2x-1}+1\right)-x\left(2x-1\right)-2=0\left(2\right)\)
đặt \(\sqrt{2x-1}=t\left(zới\right)t\ge0=>x=\frac{t^2+1}{t}\)thay zô PT (2) ta đc
\(t^4-3t^3-2t^2-3t+1=0\Leftrightarrow\left(t^2+t+1\right)\left(t^2-4t+1\right)=0\Leftrightarrow t^2-4t+1=0\Leftrightarrow t=2\pm\sqrt{3}\)
từ đó tìm đc
\(x=4\pm2\sqrt{3}\left(tm\right)\)
`(x^2-x+1)^4+4x^4=5x^2(x^2-x+1)^2`
Đặt `a=(x^2-x+1)^2,b=x^2`
`pt<=>a^2+4b^2=5ab`
`<=>a^2-5ab+4b^2=0`
`<=>a^2-ab-4ab+4b^2=0`
`<=>a(a-b)-4b(a-b)=0`
`<=>(a-b)(a-4b)=0`
`<=>` $\left[ \begin{array}{l}a=b\\a=4b\end{array} \right.$
`+)a=b`
`<=>x^2=(x^2-x+1)^2`
`<=>(x^2+1)(x^2-2x+1)=0`
`<=>(x-1)^2=0` do `x^2+1>0`
`<=>x=1`
`+)a=4b`
`<=>x^2=4(x^2-x+1)^2`
`<=>x^2=(2x^2-2x+1)^2`
`<=>(2x^2-x+1)(2x^2-3x+1)=0`
`+)2x^2-x+1=0`
`<=>x^2-1/2x+1/2=0`
`<=>(x-1/4)^2+7/16=0` vô lý
`+)2x^2-3x+1=0`
`<=>2x^2-2x-x+1=0`
`<=>2x(x-1)-(x-1)=0`
`<=>(x-1)(2x-1)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac{1}{2}\end{array} \right.$
Vậy `S={1,1/2}`
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Chia cả 2 vế cho x2