Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Sửa đề: 8x-1
=>2(8x^2-x)(8x^2-x+2)-126=0
=>2[(8x^2-x)^2+2(8x^2-x)]-126=0
=>(8x^2-x)^2+2(8x^2-x)-63=0
=>(8x^2-x+9)(8x^2-x-7)=0
=>8x^2-x-7=0
=>x=1 hoặc x=-7/8
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>x=\(\dfrac{1}{5}\)
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(9x^2+18x+9\right)=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)
\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
Tập nghiệm của pt là: \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)
\(\left(3x-2\right)\left(x-1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)
\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
Tập nghiệm của phương trình là : \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
<=> \(\left(3x-2\right)\left(x+1\right)^2.3^2.\left(3x+8\right)+144=0\)
<=> \(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\) (*)
Đặt \(3x+3=t\) Khi đó pt (*) trở thành:
\(\left(t-5\right)t^2\left(t+5\right)+144=0\)
<=> \(t^4-25t^2+144=0\)
<=> \(\left(t-4\right)\left(t-3\right)\left(t+3\right)\left(t+4\right)=0\)
đến đây bn tự giải tiếp nhé
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
TH1:x=7-\(\sqrt{35}\)
TH2:x=\(\sqrt{35}\)+7
\(\Rightarrow9x^2+6x+1-x^2+8x-16=0\)
\(\Rightarrow8x^2+14x-15=0\)
\(\Rightarrow8x^2+20x-6x-15=0\)
\(\Rightarrow4x\left(2x+5x\right)-3\left(2x+5\right)=0\)
\(\Rightarrow\left(2x+5\right)\left(4x-3\right)=0\)
=> 2x + 5 = 0 => x = -5/2
hoặc 4x - 3 = 0 => x = 3/4
Vậy x = -5/2 , x = 3/4