Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
\(\left(5x+2\right)\left(x-7\right)=0\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=-2\\x=7\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\).
Vậy \(S=\left\{-\frac{2}{5};7\right\}\).
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
\(a,x^2-x-6=0\)
\(x^2-3x+2x-6=0\)
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(b,x^2+5x+6=0\)
\(x^2+2x+3x+6=0\)
\(x\left(x+2\right)+3\left(x+2\right)=0\)
\(\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Ta có : |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| -x + 7 = 0
=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7
ĐK \(x-7\ge0\Rightarrow x\ge7\)
Khi đó ta có x - 2 > 0 ; x - 3 > 0 ; ... x - 6 > 0
=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7
<=> x - 2 + x - 3 + x - 4 + x - 5 + x - 6 = x - 7
=> 5x - 20 = x - 7
=> 4x = 13
=> x = 4,25 (loại)
Vậy x \(\in\varnothing\)
Giải :
\(\left(x+2\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\2x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(S=\left\{-2;\frac{1}{2}\right\}\).
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
(2x + 1)(3x + 3) = 0
<=> 2x + 1 = 0 hoặc 3x + 3 = 0
<=> x = -1/2 hoặc x = -1
\(\left(2x+1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\3x=-3\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy ...
\(\left(2x-7\right)\left(4-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-7=0\\4-5x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=7\\5x=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{4}{5}\end{cases}}\)
(2x - 7)(4 - 5x) = 0
<=> 2x - 7 = 0 hoặc 4 - 5x = 0
2x = 0 + 7 -5x = 0 - 4
2x = 7 -5x = -4
x = 7/2 x = 4/5
=> x = 7/2 hoặc x = 4/5