Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT=\sqrt{\left(2n+1\right)^2}+\sqrt{4n^2}=\sqrt{\left(2n+1\right)^2}+\sqrt{\left(2n\right)^2}\)
\(=\left|2n+1\right|+\left|2n\right|\)
Vì \(n\inℕ\)\(\Rightarrow2n+1>0\); \(2n\ge0\)
\(\Rightarrow\left|2n+1\right|=2n+1\)và \(\left|2n\right|=2n\)
\(\Rightarrow VT=2n+1+2n=4n+1\)
Ta có: \(VP=\left(2n+1\right)^2-4n^2=\left(2n+1\right)^2-\left(2n\right)^2\)
\(=\left(2n+1-2n\right)\left(2n+1+2n\right)=4n+1\)
\(\Rightarrow VT=VP\)\(\Rightarrowđpcm\)
\(Taco:\)
\(\left(x+y\right)\left(y+z\right)=187\Leftrightarrow xy+xz+yy+yz=187\)
\(\left(y+z\right)\left(z+x\right)=154\Leftrightarrow yz+xy+zz+xz=154\)
\(\left(z+x\right)\left(x+y\right)=238\Leftrightarrow xz+zy+xx+xy=238\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)+\left(x+z\right)\left(x+y\right)+\left(y+z\right)\left(z+x\right)=579\)
\(\Leftrightarrow xy+zx+yy+yz+yz+xy+zz+xz+xz+zy+xx+xy=579\)
\(\Leftrightarrow3\left(xz+xy+yz\right)+x^2+y^2+z^2=579\)
\(\left(z+x\right)\left(x+y\right)-\left(x+y\right)\left(y+z\right)=51\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x^2-y^2=51\)
\(\left(z+x\right)\left(x+y\right)-\left(y+z\right)\left(x+z\right)=84\)
\(\Leftrightarrow\left(x+z\right)\left(x-z\right)=84\Leftrightarrow x^2-z^2=84\)
\(\Leftrightarrow y^2-z^2=33\)
đến đây tịt
Vừa post xong
Lời giải như sau: Kí hiệu \(n!=1\cdot2\cdots n\) là tích \(n\) số nguyên dương đầu tiên. Khi đó ta sẽ có
Tử số bằng \(\left(2\cdot1\right)\left(2\cdot3\right)\left(2\cdot5\right)\cdots\left(2\cdot\left(2n-1\right)\right)=2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right).\)
Mẫu số bằng \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+5\right)\cdots\left(2n\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}=\frac{\left(2n\right)!}{n!}\cdot\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\).
Suy ra \(a_n=\frac{2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right)}{\left(2n\right)!}\cdot n!\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\frac{2^n\cdot n!}{\left(2\cdot1\right)\left(2\cdot2\right)\cdots\left(2\cdot n\right)}\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\).
Cuối cùng ta có \(a_n=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=y\left(y+2\right)+1=\left(y+1\right)^2\)
ở đó \(y=n^2+5n+4\) là số nguyên. Vậy \(a_n\) là số chính phương.
Áp dụng Côsi
\(VT=\left(16x^{4n}+1\right)\left(y^{4n}+1\right)\left(z^{4n}+1\right)\ge2\sqrt{16x^{4n}}.2\sqrt{y^{4n}}.2\sqrt{z^{4n}}\)
\(=32x^{2n}y^{2n}z^{2n}=VP\)
Dấu "=" xảy ra khi và chỉ khi \(x^{4n}=\frac{1}{16};y^{4n}=z^{4n}=1\)
\(\Leftrightarrow x=\sqrt[n]{\frac{1}{2}};y=z=1\)