K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Ta có : \(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}+\frac{x+2038}{6}=0\)

=> \(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1+\frac{x+2038}{6}-3=0\)

=> \(\frac{x+2}{2018}+\frac{2018}{2018}+\frac{x+3}{2017}+\frac{2017}{2017}+\frac{x+4}{2016}+\frac{2016}{2016}+\frac{x+2038}{6}-\frac{18}{6}=0\)

=> \(\frac{x+2000}{2018}+\frac{x+2000}{2017}+\frac{x+2000}{2016}+\frac{x+2000}{6}=0\)

=> \(\left(x+2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{6}\right)=0\)

=> \(x+2000=0\)

=> \(x=-2000\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{-2000\right\}\)

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

2 tháng 5 2019

\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)

\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)

\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)

\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)

\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))

\(\Leftrightarrow\) \(x=2019\)

Vậy phương trình có nghiệm là : \(x=2019\)

2 tháng 5 2019
X=2019
5 tháng 4 2020

a, Làm

\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)

<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)

<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

<=> x+2021=0

<=> x=-2021

Kl:......................

b, Làmmmmm

\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)

<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)

<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)

<=> x=2006

Kl:..............

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)

\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=2020\)

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)

\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)

\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)

\(< =>x-2020=0< =>x=2020\)

28 tháng 2 2020

a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)

\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)

\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)

\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)

\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

c) \(x^3-3x^2+4=0\)

\(\Leftrightarrow x^3+x^2-4x^2+4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)

Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)

\(\Rightarrow x+2015=0\Rightarrow x=-2015\)

\(S=\left\{-2015\right\}\)

16 tháng 4 2020

gợi ý 

2017-x-2=2018-3-x=2019-4-x=2020-5-x

23 tháng 3 2019

\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\\ \Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\\ \Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\\ \Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\\ Vì\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\\ \Rightarrow x+2014=0\\ \Leftrightarrow x=-2014\\ Vậy...\)

23 tháng 3 2019
https://i.imgur.com/StrNaR3.jpg
26 tháng 3 2020

Ta có \(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}.x=\frac{2018}{2019}.x\)

<=>\(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}x-\frac{2018}{2019}x=0\)

<=>x\(\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\) không thể bằng 0

Vậy x=0

Ta có 1 nghiệm thỏa mãn S=\(\left\{0\right\}\)

21 tháng 3 2020

Cộng 2 vế của phương trình với 2 ta có: \(\frac{2-x}{2016}+1=\left(\frac{1-x}{2017}+1\right)-\left(\frac{x}{2018}-1\right)\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}-\frac{x-2018}{2018}\)\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

Vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)\(\Rightarrow2018-x=0\)\(\Leftrightarrow x=2018\)

Vậy tập nghiệm của phương trình là \(S=\left\{2018\right\}\)