Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
ĐK: \(x\ge-1;y\ge3;z\ge1\)
\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}\le\frac{x+1+1+y-3+1+z-1+1}{2}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=4\\z=2\end{cases}\left(tm\right)}\)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
1) a) \(\hept{\begin{cases}2x-y=5\\x+y=4\end{cases}}\)<=> \(\hept{\begin{cases}3x=9\\x+y=4\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\3+y=4\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
\(16x^5-8x^3+x=0\)(1) <=> \(x\left(16x^4-8x^2+1\right)=0\)
<=> \(x_1=0\)hoac \(16x^4-8x^2+1=0\)
\(16x^4-8x^2+1=0\)
Dat \(x^2=t\left(t\ge0\right)\)phuong trinh tro thanh
\(16x^2-8x+1=0\)
\(\left(a=16;b'=\frac{b}{2}=-\frac{8}{2}=-4:c=1\right)\)
\(\Delta'=b'^2-ac=\left(-4\right)^2-16\cdot1=16-16=0\)
Phuong trinh co nghiem kep t1 =t2=\(-\frac{b'}{a}=-\frac{-4}{1}=4\)(thoa)
Voi t=4 ta duoc
\(x^2=4\)<=> \(x_2=2,x_3=-2\)
Vay nghiem cua phuong trinh (1) la \(x_1=0,x_2=2,x_3=-2\)
\(\sqrt[3]{\frac{1}{2}+x}+\sqrt[3]{\frac{1}{2}-x}=1\)
=> \(\frac{1}{2}+x+\frac{1}{2}-x+3\sqrt[3]{\left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right)}\left(\sqrt[3]{\frac{1}{2}+x}+\sqrt[3]{\frac{1}{2}-x}\right)=1\)
=> \(1+\sqrt[3]{\frac{1}{4}-x^2}=1^3\Rightarrow\sqrt[3]{\frac{1}{4}-x^2}=0\)
=> \(\frac{1}{4}-x^2=0\Rightarrow x^2=\frac{1}{4}\)
=> x = 1/2 hoặc x = -1/2
<=> \(\left(\sqrt[3]{\frac{1}{2}+x}+\sqrt[3]{\frac{1}{2}-x}\right)^3=1\)
<=> \(\frac{1}{2}+x+3.\sqrt[3]{\frac{1}{2}+x}.\sqrt[3]{\frac{1}{2}-x}\left(\sqrt[3]{\frac{1}{2}+x}+\sqrt[3]{\frac{1}{2}-x}\right)+\frac{1}{2}-x=1\)
<=> \(\sqrt[3]{\frac{1}{2}+x}.\sqrt[3]{\frac{1}{2}-x}\left(\sqrt[3]{\frac{1}{2}+x}+\sqrt[3]{\frac{1}{2}-x}\right)=0\)
Thế \(\sqrt[3]{\frac{1}{2}+x}+\sqrt[3]{\frac{1}{2}-x}=1\) ta được \(\sqrt[3]{\frac{1}{2}+x}.\sqrt[3]{\frac{1}{2}-x}=0\)
<=> \(\sqrt[3]{\frac{1}{2}+x}=0\) hoặc \(\sqrt[3]{\frac{1}{2}-x}=0\)
<=> \(x=-\frac{1}{2}\) hoặc \(x=\frac{1}{2}\)
Thử lại : \(x=-\frac{1}{2}\); \(x=\frac{1}{2}\) thỏa mãn
vậy pt có 2 nghiệm ....
\(\Leftrightarrow\sqrt{\frac{x+1}{x-5}}=2\)đk : \(x>5;x\le-1\)
\(\Leftrightarrow\frac{x+1}{x-5}=4\Leftrightarrow x+1=5x-20\Leftrightarrow4x=21\Leftrightarrow x=\frac{21}{4}\)( tm )
TL
Mình chưa học nên bn lên google là có mà
T I K Cho mik nha
#Kirito