Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\Leftrightarrow\frac{x-\left(a+b\right)+x}{\left(a+b-x\right)x}=\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{2x-\left(a+b\right)}{\left(a+b-x\right)x}=\frac{a+b}{ab}\Rightarrow\left(2x-\left(a+b\right)\right)ab=\left(a+b\right)\left(a+b-x\right)x\)
\(\Rightarrow2xab-\left(a+b\right)ab=x\left(a+b\right)^2-x^2\left(a+b\right)\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(\left(a+b\right)^2-2ab\right)-\left(a+b\right)ab=0\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-\left(a+b\right)ab=0\)
a) ĐKXĐ : \(x\ne\pm a\).
Với \(a=-3\) khi đó ta có pt :
\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)
\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)
\(\Leftrightarrow2x^2+6x+24=0\)
\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )
Phần b) tương tự.
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)
\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)
\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)
\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)
\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)
\(\Leftrightarrow2ax=3a^2+a\)
\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)
a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)
b) a=1
\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)
a) \(ĐKXĐ:x\ne\pm3\)
Với a = -3
\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)
\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)
\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)
\(\Leftrightarrow-2x^2+6=0\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)
Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
Với a = 1
\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)
\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)
\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)
\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)
\(\Leftrightarrow-2x^2+2=0\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)(ktm)
Vậy với \(a=1\Leftrightarrow x\in\varnothing\)
c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :
\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)
\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)
\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)
\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)
Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\)
Đề có bị sai không bạn. Mình nghĩ đề phải là:
\(\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
~~~~~~~~~~~~~~~~~~~~~~~~ Bài làm ~~~~~~~~~~~~~~~~~~~~~~~~
\(Đkxđ:\hept{\begin{cases}a\ne0\\b\ne0\\x\ne0;x\ne-\left(a+b\right)\end{cases}}\)
Chuyển các biểu thức chứa ẩn về phái trái ta được: \(\frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\)
Quy đồng mẫu ta được: \(\frac{x-\left(a+b+x\right)}{x\left(a+b+x\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{-\left(a+b\right)}{x\left(a+b+x\right)}=\frac{a+b}{ab}\left(1\right)\)
Ta xét các trường hợp sau:
- Khi \(a+b\ne0\)thì:
\(\left(1\right)\Leftrightarrow-x\left(a+b+x\right)=ab\Leftrightarrow x^2+\left(a+b\right)x+ab=0\)
\(\Leftrightarrow x^2+ax+bx+ab=0\Leftrightarrow x\left(x+a\right)+b\left(x+a\right)=0\)
\(\Leftrightarrow\left(x+a\right)\left(x+b\right)=0\Leftrightarrow\orbr{\begin{cases}x=-a\\x=-b\end{cases}}\)
Từ trên ta xét 2 trường hợp:
+ \(x=-a\) Để \(x=-a\) là nghiệm của pt đề cho thì:\(\Leftrightarrow\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Vậy nếu \(a\ne0;b\ne0\Rightarrow x=-a\) là nghiệm của pt.
Tương tự như trên \(x=-b\) để là nghiệm của pt thì \(\Leftrightarrow\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Vậy nếu ...............................
- Khi \(a+b=0\) thì \(\left(1\right)\) được nghiệm với \(\forall x\in R\left(a\ne0;b\ne0\right)\)
Trường hợp này thì nghiệm của pt (1) được nghiệm \(\forall x\in R;x\ne0\)
Từ trên ta suy ra:
+ \(a\ne0;b\ne0;a+b\ne0\Rightarrow S=\left\{-b;-a\right\}\)
+ \(a\ne0;b\ne0;a+b=0\Rightarrow S=\left\{\forall x\in R;x\ne0\right\}\)
PT : \(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\). Điều kiện xác định : \(x\ne0,x\ne a-b\)
\(\Leftrightarrow\frac{ab-bx+ax}{abx}=\frac{1}{x-a+b}\)
\(\Leftrightarrow\left(ab-bx+ax\right)\left(x-a+b\right)=abx\)
\(\Leftrightarrow\left[x\left(a-b\right)+ab\right]\left[x-\left(a-b\right)\right]=abx\)
\(\Leftrightarrow\left[x-\left(a-b\right)\right].x\left(a-b\right)+\left[x-\left(a-b\right)\right].ab=abx\)
\(\Leftrightarrow x^2\left(a-b\right)-x\left(a-b\right)^2+abx-ab\left(a-b\right)=abx\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)x^2-\left(a-b\right)x-ab\right]=0\)
Đến đây bạn tự biện luận nhé :)
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!