\(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=-\frac{3}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 6 2019

\(x=0\) không phải nghiệm

\(\frac{4}{x+1+\frac{3}{x}}+\frac{5}{x-5+\frac{3}{x}}=-\frac{3}{2}\)

Đặt \(x-5+\frac{3}{x}=a\)

\(\frac{4}{a+6}+\frac{5}{a}=-\frac{3}{2}\)

\(\Leftrightarrow8a+10\left(a+6\right)=-3a\left(a+6\right)\)

\(\Leftrightarrow3a^2+36a+60=0\Rightarrow\left[{}\begin{matrix}a=-2\\a=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-5+\frac{3}{x}=-2\\x-5+\frac{3}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 6 2019

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{4}{x-8+\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)

Đặt \(x-10+\frac{7}{x}=a\)

\(\frac{4}{a+2}+\frac{5}{a}=-1\)

\(\Leftrightarrow4a+5\left(a+2\right)=-a\left(a+2\right)\)

\(\Leftrightarrow a^2+11a+10=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-10+\frac{7}{x}=-1\\x-10+\frac{7}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+7=0\\x^2+7=0\end{matrix}\right.\)

31 tháng 7 2016

a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\)\(\frac{21\left(4x+3\right)-15\left(6x-2\right)}{105}=\frac{35\left(5x+4\right)+315}{105}\)

\(\Leftrightarrow21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315\)

\(\Leftrightarrow84x+63-90x+30=175x+140+315\)

\(\Leftrightarrow84x-90x-175x=140+315-63-30\)

\(\Leftrightarrow-181x=362\)

\(\Leftrightarrow x=-2\)

b)\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x+4\right)^2}{6}=0\)

\(\Leftrightarrow\)\(\frac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x+4\right)^2}{24}=0\)

\(\Leftrightarrow8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2+8x+16\right)=0\)

\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2+32x+64=0\)

\(\Leftrightarrow8x^2-12x^2+4x^2-32x+32x=-64-27-32\)

\(\Leftrightarrow0x=-123\) (vô nghiệm)

18 tháng 5 2016

1. ĐKXĐ : \(x\ne-1;-3;-5;-7\)

\(\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+7x+5x+35}=\frac{1}{9}\)=1/9

\(\frac{1}{x\left(x+1\right)+3\left(x+1\right)}+\frac{1}{x\left(x+3\right)+5\left(x+3\right)}+\frac{1}{x\left(x+7\right)+5\left(x+7\right)}=\frac{1}{9}\)

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)

nhân cả 2 vế với 2 ta được

\(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{9}\)

\(< =>\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)

\(< =>\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)

\(< =>\frac{\left(x+7\right)-\left(x+1\right)}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)

\(< =>\frac{6}{x^2+8x+7}=\frac{2}{9}\)

\(=>6.9=2x^2+16x+14\)

\(< =>2x^2+16x+14-54=0\)

\(< =>2\left(x^2+8x-20\right)=0\)

\(< =>x^2+8x-20=0\)

\(< =>x^2+10x-2x-20=0\)

\(< =>x\left(x+10\right)-2\left(x+10\right)=0\)

\(< =>\left(x-2\right)\left(x+10\right)=0\)

\(=>\hept{\begin{cases}x-2=0\\x+10=0\end{cases}< =>\hept{\begin{cases}x=2\\x=-10\end{cases}}}\)(thỏa mãn ĐKXĐ)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

31 tháng 3 2020

a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)

=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)

=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)

=> \(6x+6+3x-6=12-8x+8\)

=> \(17x=20\)

=> \(x=\frac{20}{17}\)

b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)

=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)

=> \(4\left(11x-1\right)=6\left(6-x\right)\)

=> \(44x-4-36+6x=0\)

=> \(\)\(50x=40\)

=> \(x=\frac{4}{5}\)

c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)

=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)

=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)

=> \(20-40x+6x-9x+45+24=0\)

=> \(43x=89\)

=> \(x=\frac{89}{43}\)

11 tháng 2 2020

Giải:

a) \(\frac{3x+2}{3x-2}\)62+3x=9x29x24 \(\frac{9x^2+12x+4}{\left(3x-2\right)\left(3x+2\right)}\) - \(\frac{18x-12}{\left(3x-2\right)\left(3x+2\right)}\) = \(\frac{9x^2}{9x^2-4}\) ⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0

⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)

Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .

b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

\(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4

⇔ 8 = 4 ( vô lí)

Vậy phương trình trên vô nghiệm.

Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!

11 tháng 2 2020

ĐKXĐ đâu?

NV
30 tháng 6 2019

\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)

\(\Rightarrow x=\pm1\)

NV
29 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:

\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)

Đặt \(3x-5+\frac{2}{x}=a\)

\(\frac{2}{a}+\frac{13}{a+6}=6\)

\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)

\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)