Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ; \(3x-7\sqrt{x}+4=0
\)
\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
từ đó suy ra x
a ĐK \(x\ge0\)
\(3x-7\sqrt{x}+4=0\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=\frac{4}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}\left(tm\right)}}\)
b. ĐK \(x\ge2\)
\(\Leftrightarrow\sqrt{x+1}.\sqrt{x-1}=\sqrt{x+3}.\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x^2-1}=\sqrt{x^2+x-6}\)
\(\Leftrightarrow x^2-1=x^2-x+6\Leftrightarrow x=5\left(tm\right)\)
Các câu còn lại tương tự
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)
Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)
- Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
- Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).
Từ điều kiện : Với \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\);
\(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>0\)
Do đó pt (1) vô nghiệm.
Vậy pt ban đầu vô nghiệm.
Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)
Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)
- Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
- Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1). So sánh từ điều kiện : Với mọi \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\), \(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>\)với mọi x
Do đó pt (1) vô nghiệm.
Vậy pt ban đầu vô nghiệm.