\(\frac{2x}{x-2}\) - \(\frac{3x+10}{x^2 -4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x+2}=0\)

\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x^2+4x-3x-10-x^2+2x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+3x-10}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+5x-2x-10}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

=> x+5=0

<=> x=-5(tmđk)

Vậy x=-5 là nghiệm của phương trình

29 tháng 6 2020

\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\) ( đkxđ : \(x\ne\pm2\))

\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow2x^2+4x-3x-10=x^2-2x\)

\(\Leftrightarrow2x^2+4x-3x-10-x^2+2x=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

\(x\ne\pm2\)=> x = -5

18 tháng 3 2019

lỗi front

18 tháng 3 2019

xin lỗi, để mình sửa lại

8 tháng 7 2019

a)ĐKXĐ: \(\left\{{}\begin{matrix}-2x+1\ne0\\\frac{3}{-2x+1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-2x+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\x< \frac{1}{2}\end{matrix}\right.\)

b) ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)

c) ĐKXĐ: \(x\in\mathbb{R}\)