Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\frac{7x-3}{x-1}=\frac{2}{3}\) ( \(x\ne1\))
\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)
\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)
\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)
\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)
\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)
\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)
\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)
\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)
\(\Leftrightarrow4x^2+5x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)
\(\left(2x+\frac{5}{4}\right)^2>0\)
\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)
=> PT vô nghiệm
\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)
\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\)
\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)
\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\frac{16}{6}\)
\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)
\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)
\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)
\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)
\(\Leftrightarrow x^4+x^3-4x-8=0\)
\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)
Đến đấy mk tắc r xl bạn nhé
\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)
\(\Leftrightarrow\frac{3x-1}{2}+\frac{2\left(3x-1\right)}{5}-\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{2}+\frac{2}{5}-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\frac{-1}{10}\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow3x-1=-5\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy nghiệm duy nhất của phương trình là\(x=\frac{-4}{3}\)
\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5\left(x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+6-5\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}-\frac{\left(x+1\right)\left(6x+1\right)}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-\frac{1}{3}-\frac{6x+1}{6}\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là\(x=-1\)
a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15
=>2x=3x+20=>x=-20
b)(x^2-6)/x=x+3/2
=>(x^2-6)/x - x=3/2
=>-6/x[quy đồng]=3/2
=>x=-4
c)Để (x^2+2x)−(3x+6)/x−3=0
thì (x^2+2x)−(3x+6)=0
=x(x+2)-3(x+2)=(x-3)(x+2)=0
=>x=3 hoặc x=-2
Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại
Vậy x=2
d)5/3x+2=2x−1
=>5=(3x+2)(2x-1)
Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé
e)
(2x−1/x−1)+1=1/x−1
=>1/x-1-2x-1/x-1=1
=>-2x/x-1=1
=>-2x=x-1
=>x=1/3
g)(x+3/x+1)+(x−2/x)=2
=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi
nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks
a) \(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow2x-5=3\left(x+5\right)\)
\(\Leftrightarrow2x-5=3x+15\)
\(\Leftrightarrow2x-3x=15+5\)
\(\Leftrightarrow-x=20\\ \)
\(\Leftrightarrow x=-20\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)
\(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
d) \(\frac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)
\(\Leftrightarrow5=6x^2+x-2\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)
e) \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)
\(\Leftrightarrow2x-1+x-1=1\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)
g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow2x-2x-2=0\)
\(\Leftrightarrow-2=0\) \(\Rightarrow\)Phương trình vô nghiệm
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{2x+3}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{x+2}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{2}{\frac{2x+3+x+2}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{2}{\frac{3x+5}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{4x+6}{3x+5}=\frac{6}{3x-1}\)
\(\Rightarrow\left(4x+6\right)\left(3x-1\right)=6\left(3x+5\right)\)
\(\Rightarrow12x^2-4x+18x-6=18x+30\)
\(\Rightarrow12x^2-4x+18x-18x=30+6\)
\(\Rightarrow12x^2-4x-36=0\)
\(\Rightarrow3x^2-x-9=0\)
\(\Rightarrow x^2-\frac{1}{3}x-3=0\)
\(\Rightarrow x^2-2.\frac{1}{6}x+\frac{1}{36}-\frac{1}{36}-3=0\)
\(\Rightarrow\left(x-\frac{1}{6}\right)^2-\frac{109}{36}=0\)
\(\Rightarrow\left(x-\frac{1}{6}-\frac{\sqrt{109}}{6}\right)\left(x-\frac{1}{6}+\frac{\sqrt{109}}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{109}}{6}\\x=\frac{1-\sqrt{109}}{6}\end{cases}}\)
làm lại nhé, chỗ kia quy đồng sai
lần này làm theo cách khác
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{2}{x-\frac{1}{3}}\)
\(\Rightarrow x+\frac{1}{\frac{2x+3}{x+2}}=x-\frac{1}{3}\)
\(\Rightarrow\frac{x+2}{2x+3}=\frac{-1}{3}\)
\(\Rightarrow\left(x+2\right).3=-1.\left(2x+3\right)\)
\(\Rightarrow3x+6=-2x-3\)
\(\Rightarrow3x+2x=-3-6\)
\(\Rightarrow5x=-9\)
\(\Rightarrow x=\frac{-9}{5}\)
vậy \(x=\frac{-9}{5}\)