\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{2x-3}}=\sqrt{3}\left(\frac{1}{\sqrt{4x-3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

bài 1:

a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm 
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7 \)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn

11 tháng 8 2018

1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(|2-\sqrt{3}|+|1+\sqrt{3}|\)

\(2-\sqrt{3}+1+\sqrt{3}\)

\(2+1\)\(3\)

b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)

\(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)

\(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)

\(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)

2 a) \(\sqrt{x^2-2x+1}=7\)

<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)

<=> \(\sqrt{\left(x-1\right)^2}=7\)

<=> \(|x-1|=7\)

Nếu \(x-1>=0\)=>\(x>=1\)

=> \(|x-1|=x-1\)

\(x-1=7\)<=>\(x=8\)(thỏa)

Nếu \(x-1< 0\)=>\(x< 1\)

=> \(|x-1|=-\left(x-1\right)=1-x\)

\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)

Vậy x=8 hoặc x=-6

b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)

<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\sqrt{x-5}=\sqrt{1-x}\)

ĐK \(x-5>=0\)<=> \(x=5\)

\(1-x\)<=> \(-x=-1\)<=> \(x=1\)

Ta có \(\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)

<=> \(x-5=1-x\)

<=> \(x-x=1+5\)

<=> \(0x=6\)(vô nghiệm)

Vậy phương trình vô nghiệm

Kết bạn với mình nha :)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

11 tháng 6 2016

\(\frac{1}{pt}\)=\(\sqrt{x}+\sqrt{2x+3}=\frac{1}{\sqrt{3}}\left(\sqrt{4x-3}+\sqrt{5x-6}\right)\)   

=>\(\frac{x-2x-3}{\sqrt{x}-\sqrt{2x-3}}=\frac{1}{\sqrt{3}}\left(\frac{4x-3-5x-6}{\sqrt{4x-3}-\sqrt{5x+6}}\right)\)

=>\(\frac{3-x}{\sqrt{x}-\sqrt{2x-3}}=\frac{1}{\sqrt{3}}\left(\frac{3-x}{\sqrt{4x-3}-\sqrt{5x+6}}\right)\)

=>\(\sqrt{x}-\sqrt{2x-3}=\sqrt{3}\left(\sqrt{4x-3}-\sqrt{5x+6}\right)\)

=>\(\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=\sqrt{3}\left(\frac{3-x}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\)

=>\(\left(3-x\right)\left(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-\left(\frac{\sqrt{3}}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\right)\)=0

=>3-x=0=>x=3

hoặc\(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-\left(\frac{\sqrt{3}}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\)=0

11 tháng 6 2016

Em mới học lớp 7 

31 tháng 7 2017

a/ Sửa đề: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)

Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3\)

\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{a+b}{5}-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=5-b\end{cases}}\)

Với \(a=b\)

\(\Rightarrow\sqrt{4x+1}=\sqrt{3x-2}\)

\(\Leftrightarrow x=-3\)

Với \(a=5-b\)

\(\Rightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)

31 tháng 7 2017

Trường hợp thứ 2 chưa kịp tính cái lỡ tay bấm rồi. Mà thôi cũng đơn giản nên tự làm trường hợp đó nha.