Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Phương trình đã cho tương đương với :
\(2^{3x}+2^x.3^{2x}=2.3^{2x}\Leftrightarrow\left(\frac{2}{3}\right)^{2x}+\left(\frac{2}{3}\right)^x-2=0\)
Đặt \(t=\left(\frac{2}{3}\right)^x,\left(t>0\right)\) Phương trình trở thành
\(t^3+t-2=0\) hay \(\left(t-1\right)\left(t^2+t+2\right)=0\)
Do \(t^2+t+2=\left(t+\frac{1}{2}\right)^2+\frac{7}{4}>0\) nên \(t-1=0\) hay t=1
Từ đó suy ra \(\left(\frac{2}{3}\right)^x=1=\left(\frac{2}{3}\right)^0\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất \(x=0\)
c) Điều kiện \(x\ne0\). Chia cả 2 vế của phương trình cho \(6^{\frac{1}{x}}>0\), ta có :
\(6.\left(\frac{3}{2}\right)^{\frac{1}{x}}-13.1+6\left(\frac{2}{3}\right)^{\frac{1}{x}}=0\)
Đặt \(t=\left(\frac{3}{2}\right)^{\frac{1}{x}},\left(t>0\right)\)
Phương trình trở thành
\(6t-13+\frac{6}{t}=0\) hay \(6t^2-13t+6=0\)
Phương trình bậc 2 trên có 2 nghiệm dương \(t=\frac{3}{2},t=\frac{2}{3}\)
Với \(t=\frac{3}{2}\) thì \(\left(\frac{3}{2}\right)^{\frac{1}{x}}=\frac{3}{2}\Leftrightarrow\frac{1}{x}=1\Leftrightarrow x=1\)
Với \(t=\frac{2}{3}\) thì \(\left(\frac{3}{2}\right)^{\frac{1}{x}}=\frac{2}{3}\Leftrightarrow\frac{1}{x}=-1\Leftrightarrow x=-1\)
Phương trình có 2 nghiệm dương \(x=1,x=-1\)Với
Phương trình đã cho tương đương với
\(2^{5.\frac{x+5}{x-7}}=2^{-2}.5^{3.\frac{x+17}{x-3}}\) \(\Leftrightarrow2^{\frac{7x+11}{x-7}}=5^{\frac{3x+51}{x-3}}\)
Lấy Logarit cơ số 2 hai vế, ta có :
\(\frac{7x+11}{x-7}=\frac{3x+51}{x-3}\log_25\)
\(\Leftrightarrow\begin{cases}\left(7-3\log_25\right)x^2-2\left(5+15\log_2x\right)x-\left(33-357\log_25\right)=0\\x\ne7,x\ne3\end{cases}\)
Phương trình bậc 2 trên có :
\(\Delta'=1296\log_2^2-2448\log_25+256>0\)
Nên có nghiệm \(x=\frac{5+15\log_25\pm\sqrt{\Delta'}}{7-3\log_25}\)
Hai nghiệm này đều thỏa mãn vì chúng đều khác 7 và 3
Điều kiện \(x\ne0\) nhận thấy
\(\frac{1-2x}{x^2}-\frac{1-x^2}{x^2}=\frac{x^2-2x}{x^2}=1-\frac{2}{x}=2\left(\frac{1}{2}-\frac{1}{x}\right)\)
Do đó phương trình tương đương với
\(2^{\frac{1-x^2}{x^2}}-2^{\frac{1-2x}{x^2}}=\frac{1}{2}\left(\frac{1-2x}{x^2}-\frac{1-x^2}{x^2}\right)\)
\(\Leftrightarrow2^{\frac{1-x^2}{x^2}}+\frac{1}{2}.\frac{1-x^2}{x^2}=2^{\frac{1-2x}{x^2}}+\frac{1}{2}.\frac{1-2x}{x^2}\)
Mặt khác \(f\left(t\right)=2^t+\frac{t}{2}\) là hàm đồng biến trên R
Do đó từ : \(f\left(\frac{1-x^2}{x^2}\right)=f\left(\frac{1-2x}{x^2}\right)\)
Suy ra
\(\frac{1-x^2}{x^2}=\frac{1-2x}{x^2}\)
Từ đó dễ dàng tìm ra được x=2 là nghiệm duy nhất của phương trình
Ta có : \(f\left(x\right)=\frac{1}{2}5^{2x+1}\Rightarrow f'\left(x\right)=5^{2x+1}\ln5\)
\(g\left(x\right)=5^x+4x\ln5\Rightarrow g'\left(x\right)=5^x\ln5+4\ln5=\left(5^x+4\right)\ln5\)
\(f'\left(x\right)< g'\left(x\right)\Leftrightarrow5^{2x+1}\ln5< \left(5^x+4\right)\ln5\)
\(\Leftrightarrow5^{2x+1}< 5^x+4\)
\(\Leftrightarrow5\left(5^x\right)^2-5^x-4< 0\)
\(\Leftrightarrow-\frac{4}{5}< 5^x< 1=5^0\)
\(\Leftrightarrow x< 0\) là nghiệm của bất phương trình
Ta có : \(5^{2x}-24.5^{x-1}-1=0\Leftrightarrow5^{2x}-\frac{24}{5}.5^x-1=0\)
Đặt \(t=5^x,\left(t>0\right)\)
a)Phương trở thành : \(\Leftrightarrow t^2-\frac{24}{5}.t-1=0\left[\begin{matrix}t=5\\t=-\frac{1}{5}\left(l\right)\end{matrix}\right.\)
Với \(t=5\) ta có \(x=1\)
Vậy phương trình có nghiệm là : \(x=1\) và \(x=-1\)
ĐK: \(x>1\)
b)Ta có phương trình :\(\Leftrightarrow log_{\frac{1}{2}}+log_{\frac{1}{2}}\left(x-1\right)+log_26=0\Leftrightarrow log_{\frac{1}{2}}x\left(x-1\right)+log_26=0\)
\(\Leftrightarrow log_2x\left(x-1\right)=log_26\)
\(\Leftrightarrow x\left(x-1\right)=6\Leftrightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Đôi chiếu điều kiện ta thấy phương trình có nghiệm \(x=3\)
a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0
\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)
\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)
\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)
Đặt \(\log_x2=a\left(a\in R\right)\)
Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)
\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)
Vậy pt đã cho vô nghiệm
Biến đổi phương trình về dạng :
\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)
Nhận thấy \(x=1\) là nghiệm
Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)
Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.
Đáp số : x=1
Viết phương trình về dạng
\(\frac{2^x}{3^x+4^x}-\frac{4^x}{9^x+16^x}=\frac{-5}{2x}\) hay \(\frac{2^x}{3^x+4^x}+\frac{5}{x}=\frac{2^{2x}}{3^{2x}+4^{2x}}+\frac{5}{2x}\)
Xét hàm số \(f\left(t\right)=\frac{2^t}{3^t+4^t}+\frac{5}{t}\) luôn đồng biến
Đáp số : Phương trình vô nghiệm