Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(\begin{cases}27x^3+3x+\left(9y-7\right)\sqrt{6-9y}=0\left(1\right)\\\frac{x^2}{3}+y^2+\sqrt{2-3x}-\frac{109}{81}=0\left(2\right)\end{cases}\)
Với điều kiện \(x\le\frac{2}{3};y\le\frac{2}{3}\) (1) tương đương với : \(\left(9x^2+1\right)3x=\left(6-9y+1\right)\sqrt{6-9y}\)
Đặt \(u=3x,v=\sqrt{6-9y}\) ta có \(\left(u^2+1\right)u=\left(v^2+1\right)v\)
Xét hàm số : \(f\left(t\right)=\left(t^2+1\right)t\) có \(f'\left(t\right)=3t^2+1>0\) nên hàm số luôn đồng biến trên R
Suy ra \(u=v\Leftrightarrow3x=\sqrt{6-9y}\Leftrightarrow\begin{cases}x\ge0\\y=\frac{2}{3}-x^2\left(3\right)\end{cases}\)
Thế (3) vào (2) ta được \(\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}=0\left(4\right)\)
Nhận xét \(x=0;x=\frac{2}{3}\) không phải là nghiệm của (4)
Xét hàm số : \(g\left(x\right)=\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}\)
Ta có \(g'\left(x\right)=2x\left(2x-1\right)-\frac{3}{2\sqrt{2-3x}}<0\), mọi \(x\in\left(0;\frac{2}{3}\right)\)
Nên hàm số g(x) nghịch biến trên \(\left(0;\frac{2}{3}\right)\)
Dễ thấy \(x=\frac{1}{3}\) là nghiệm của (1), suy ra \(y=\frac{5}{9}\) nên hệ có nghiệm duy nhất là \(\left(\frac{1}{3};\frac{5}{9}\right)\)
a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta = 529 > 0\), có hai nghiệm phân biệt \({x_1} = - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)
b) \( - 6{x^2} + 11x > 10 \Leftrightarrow - 6{x^2} + 11x - 10 > 0\)
Xét tam thức \(f\left( x \right) = - 6{x^2} + 11x - 10\) có \(\Delta = - 119 < 0\)và có \(a = - 6 < 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình vô nghiệm
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)
Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta = - 12 < 0\)và có \(a = 2 > 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình có vô số nghiệm
d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là \(x = 5\)
Phương trình đã cho tương đương
\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)
Để phương trình có 2 nghiệm phân biệt thì
\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)
⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)
Dựa vào trục số, (1) ⇔ m > 0
Vậy điều kiện của m là m > 0
Sai thì thứ lỗi ạ !
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
ĐKXĐ: \(x\ne0\)
Ta thấy mẫu \(x^2\ge0\forall x\in R\backslash\left\{0\right\}\)nên để phương trình bằng 0 thì:
\(-3x^3+10x=0\Leftrightarrow x\left(-3x^2+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\-3x^2+10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\\left[{}\begin{matrix}x=\frac{\sqrt{30}}{3}\left(nhan\right)\\x=-\frac{\sqrt{30}}{3}\left(nhan\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{\pm\frac{\sqrt{30}}{3}\right\}\)