\(\dfrac{x+3}{57}+\dfrac{x+4}{28}+\dfrac{x+117}{19}=0\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

\(\frac{x+3}{57}+\frac{x+4}{28}+\frac{x+117}{19}=0\)

\(\left(\frac{x+3}{57}+1\right)+\left(\frac{x+4}{28}+2\right)+\left(\frac{x+117}{19}-3\right)\)= \(0\)

\(\frac{x+60}{57}+\frac{x+60}{28}+\frac{x+60}{19}=0\)

\(\left(x+60\right)\left(\frac{1}{57}+\frac{1}{28}+\frac{1}{19}\right)=0\)

\(x+60=0\left(do\frac{1}{57}+\frac{1}{28}+\frac{1}{19}>0\right)\)

\(x=-60\)

Vậy S={-60}

31 tháng 1 2018

Mở đầu về phương trìnhMở đầu về phương trình

31 tháng 1 2018

Giáo án hả :v Nhìn quen quenn :v

22 tháng 2 2019

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)

\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)

Vậy tập nghiệm của pt là \(S=\varnothing\)

b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

\(\Leftrightarrow x-357=0\Leftrightarrow x=357\) 

Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)

15 tháng 3 2020

\(\frac{43-x}{57}+\frac{46-x}{54}=\frac{49-x}{51}+\frac{52-x}{48}\)

\(\Leftrightarrow\left(\frac{43-x}{57}+1\right)+\left(\frac{46-x}{54}+1\right)=\left(\frac{49-x}{51}+1\right)+\left(\frac{52-x}{48}+1\right)\)

\(\Leftrightarrow\frac{43-x+57}{57}+\frac{46-x+54}{54}=\frac{49-x+51}{51}+\frac{52-x+48}{48}\)

\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}=\frac{100-x}{51}+\frac{100-x}{48}\)

\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}-\left(\frac{100-x}{51}+\frac{100-x}{48}\right)=0\)

\(\Leftrightarrow\left(100-x\right)\left[\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)\right]=0\) (*)

\(\frac{1}{57}< \frac{1}{51},\frac{1}{54}< \frac{1}{48}\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)< \left(\frac{1}{51}+\frac{1}{48}\right)\)

\(\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)< 0\)

Phương trình (*) xảy ra khi: \(100-x=0\Leftrightarrow x=100\)

Vậy phương trình có nghiệm duy nhất là x = 100

NV
19 tháng 6 2019

\(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(x+3\right)-100\)

\(\Leftrightarrow20x^2-12+15x-5< 10x^2+30x-100\)

\(\Leftrightarrow10x^2-15x+83< 0\)

\(\Leftrightarrow10\left(x-\frac{3}{4}\right)^2+\frac{619}{8}< 0\)

Bất phương trình vô nghiệm

19 tháng 6 2019

cảm ơn bạn nhé

26 tháng 1 2017

a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)

\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)

\(\Leftrightarrow\frac{1+3x}{2+x}=1\)

\(\Leftrightarrow1+3x=2+x\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)

\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)

\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)

\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)

\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)

\(\Leftrightarrow-12x^2+60x-36=0\)

\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)

\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)

\(x_2=\frac{5-\sqrt{13}}{6}\)

d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)

(dấu bằng thứ nhất của câu d là dấu cộng à???)

26 tháng 1 2017

ukm

13 tháng 1 2018

bài 1:

\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)

<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)

<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)

<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)

<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)

vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0

nên x-2004=0=>x=2004

vyaj.......

bài 2:

\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)

<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)

<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)

<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)

vì 1/15+1/13+1/11+1/9 khác 0

=>x-100=0<=>x=100

11 tháng 4 2020
https://i.imgur.com/1PT4KU6.jpg
11 tháng 4 2020

cảm ơn