K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

\(PT\Leftrightarrow\dfrac{x-a}{b+c}-1+\dfrac{x-b}{c+a}-1+\dfrac{x-c}{a+b}-1=\dfrac{3x}{a+b+c}-3\)

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{c-a-b-c}{c+a}+\dfrac{x-a-b-c}{a+b}=\dfrac{3\left(x-a-b-c\right)}{a+b+c}\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\right)=0\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}=0\) thì PT có nghiệm với mọi \(x\in R\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\ne0\) thì PT có nghiệm là \(x=a+b+c\)

20 tháng 2 2019

a) ĐKXĐ: a + b + c, a + b, b + c, c + a \(\ne\) 0.

Áp d

20 tháng 2 2019

Xl ấn nhầm nha

13 tháng 1 2018

minh giai phan d, nha bn :

x-a/b+c + x-b/c+a + x-c/a+b=3

=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0

=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0

=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0

Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0

=>x=a+b+c

13 tháng 1 2018

g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c

Câu 3: 

\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)

=>3x-2>0

=>x>2/3

Câu 1: 

a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)

\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)

\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)

b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)

TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)

NV
18 tháng 3 2021

1a.

ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)

\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)

b.

ĐKXĐ: \(x\ne\left\{-1;2\right\}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)

\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)

NV
18 tháng 3 2021

1c.

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)

\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)

2a.

\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)

\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

2b.

\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)

4 tháng 1 2018

\(\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{c+a-x}{b}+\dfrac{4x}{a+b+c}=1\)

\(\Leftrightarrow\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{c+a-x}{b}+\dfrac{4x}{a+b+c}-1=0\)

\(\Leftrightarrow(\dfrac{a+b-x}{c}+1)+(\dfrac{b+c-x}{a}+1)+(\dfrac{c+a-x}{b}+1)+(\dfrac{4x}{a+b+c}-4)=0\)\(\Leftrightarrow\dfrac{a+b+c-x}{c}+\dfrac{a+b+c-x}{a}+\dfrac{a+b+c-x}{b}+\dfrac{-4\left(a+b+c-x\right)}{a+b+c}=0\)\(\Leftrightarrow\left(a+b+c-x\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}\right)=0\)

Hiển nhiên: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}>0\left(a,b,c>0\right)\)

\(\Rightarrow x=a+b+c\)