\(\dfrac{1}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Bài này dễ mà bn chỉ cần chuyển vế sau đó bình phương lên là lm đc thôi

7 tháng 3 2021

a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)

ĐKXĐ : \(x\inℝ\)

\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)

\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)

\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)

\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)

\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy phương trình có nghiệm duy nhất x = 0

9 tháng 8 2017

2. ĐK: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)

pt trên được viết lại thành

\(2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)

Đến đây dễ rồi nhé ^^

10 tháng 4 2017

a,5x2-3x+1=2x+11

\(\Leftrightarrow5x^2-3x+1-2x-11=0\)

\(\Leftrightarrow5x^2-5x-10=0\)

có a-b+c=5+5-10=0

=>\(\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

vậy PT đã cho có 2 nghiệm là x1=-1;x2=2

b/\(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6}\)

=>6x2-20x-5x-25=0

<=>6x2-25x-25=0

<=>(x-5)(6x+5)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\dfrac{-5}{6}\end{matrix}\right.\)

vậy PT đã cho có 2 nghiệm x1=5; x2=\(\dfrac{-5}{6}\)

c.\(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x}\)

=>x2+2x-10=0

\(\Delta^'=1+10=11\)

\(\Delta^'>0\) nên PT có 2 nghiệm phân biệt

x1=-1-\(\sqrt{11}\)

x2=-1+\(\sqrt{11}\)

d, \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1}\) ĐK x\(\ne\pm\dfrac{1}{3}\)

=>2(x+0,5)(3x-1) =2(7x+2)

=>6x2-13x-5=0

\(\Delta=169+120=289\Rightarrow\sqrt{\Delta}=17\)

\(\Delta\)> 0 nên PT có 2 nghiệm phân biệt

x1=\(\dfrac{13-17}{6}=\dfrac{-1}{3}\) (loại)

x2=\(\dfrac{13+17}{6}=\dfrac{5}{2}\) (thỏa mãn)

e,\(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{3}x^2-\left(\sqrt{3}-1\right)x+1-\sqrt{3}=0\)

\(\Delta=\left(\sqrt{3}-1\right)^2-8\sqrt{3}\left(1-\sqrt{3}\right)\)

=\(4-2\sqrt{3}-8\sqrt{3}+24\)

=25-2.5\(\sqrt{3}\)+3 =(5-\(\sqrt{3}\))2

\(\Delta\) >0 nên PT có 2 nghiệm phân biệt

x1=\(\dfrac{\sqrt{3}-1+5-\sqrt{3}}{4\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

x2=\(\dfrac{\sqrt{3}-1-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\)

f/ x2+2\(\sqrt{2}\)x+4=3(x+\(\sqrt{2}\))

\(\Leftrightarrow x^2+\left(2\sqrt{2}-3\right)x+4-3\sqrt{2}=0\)

\(\Delta=8-12\sqrt{2}+9-16+12\sqrt{2}=1\)

\(\Delta\)>0 nên PT đã cho có 2 nghiệm phân biệt

x1=\(\dfrac{3-2\sqrt{2}+1}{2}=2-\sqrt{2}\)

x2=\(\dfrac{3-2\sqrt{2}-1}{2}=1-\sqrt{2}\)

8 tháng 4 2017

a.

\(5x^2-3x+1=2x+11\)\(\Leftrightarrow\)\(5x^2-5x-10=0\)\(\Leftrightarrow\)\(x^2-x-2=0\)\(\Leftrightarrow\)(x-2)(x+1)=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b.

3 tháng 6 2017

Điều kiện xác định tự làm:

Đặt \(\left\{{}\begin{matrix}\sqrt{x-\dfrac{1}{x}}=a\ge0\\\sqrt{2x-\dfrac{5}{x}}=b\ge0\end{matrix}\right.\)

Ta có

\(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)

\(\Leftrightarrow\sqrt{2x-\dfrac{5}{x}}-\sqrt{x-\dfrac{1}{x}}+\left(2x-\dfrac{5}{x}\right)+\left(-x+\dfrac{1}{x}\right)=0\)

\(\Leftrightarrow b-a+b^2-a^2=0\)

\(\Leftrightarrow\left(b-a\right)\left(b+a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a+b=-1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=\sqrt{2x-\dfrac{5}{x}}\)

\(\Leftrightarrow x-\dfrac{4}{x}=0\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\left(l\right)\end{matrix}\right.\)