\(\dfrac{1}{3x^2}+\dfrac{1}{x^2-12x+2024}=\dfrac{1}{x^2-3x+506}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2019

a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)

\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)

\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

NV
1 tháng 3 2019

b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)

\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

18 tháng 1 2019

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng

22 tháng 6 2017

a) \(\dfrac{12}{x-1}-\dfrac{8}{x+1}=1\) \(\Leftrightarrow\) \(\dfrac{12\left(x+1\right)-8\left(x-1\right)}{x^2-1}=1\)

\(\Leftrightarrow\) \(\dfrac{12x+12-8x+8}{x^2-1}=1\) \(\Leftrightarrow\) \(\dfrac{4x+20}{x^2-1}=1\)

\(\Leftrightarrow\) \(x^2-1=4x+20\) \(\Leftrightarrow\) \(x^2-4x-21=0\)

giải pt ta có 2 nghiệm : \(x_1=7;x_2=-3\)

vậy phương trình có 2 nghiệm \(x=7;x=-3\)

b) \(\dfrac{16}{x-3}+\dfrac{30}{1-x}=3\) \(\Leftrightarrow\) \(\dfrac{16\left(1-x\right)+30\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}=3\)

\(\Leftrightarrow\) \(\dfrac{16-16x+30x-90}{x-x^2-3+3x}=3\) \(\Leftrightarrow\) \(\dfrac{14x-74}{-x^2+4x-3}=3\)

\(\Leftrightarrow\) \(3\left(-x^2+4x-3\right)=14x-74\)

\(\Leftrightarrow\) \(-3x^2+12x-9=14x-74\)

\(\Leftrightarrow\) \(3x^2-2x-65=0\)

giải pt ta có 2 nghiệm : \(x_1=5;x_2=\dfrac{-13}{3}\)

vậy phương trình có 2 nghiệm \(x=5;x=\dfrac{-13}{3}\)

27 tháng 12 2018

c) ĐK: x\(\ne3,x\ne-2\)

\(\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{1}{x-3}\Leftrightarrow\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}\Leftrightarrow x^2-3x+5=x+2\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)

Vậy S={1}

d) ĐK: \(x\ne2,x\ne-4\)

\(\dfrac{2x}{x-2}-\dfrac{x}{x+4}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x^2+8x}{\left(x-2\right)\left(x+4\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x^2+8x-x^2+2x}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow x^2+10x=8x+8\Leftrightarrow x^2+2x-8=0\Leftrightarrow x^2-2x+4x-8=0\Leftrightarrow x\left(x-2\right)+4\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\left(ktm\right)\\x=-4\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

20 tháng 3 2021

ĐKXĐ : \(\hept{\begin{cases}x\ne3\\x\ne-2\end{cases}}\)

<=> \(\frac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}-\frac{x+2}{\left(x-3\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+3}{\left(x-3\right)\left(x+2\right)}=0\)

=> x2 - 4x + 3 = 0

Δ' = b'2 - ac = (-2)2 - 3 = 1

Δ' > 0, áp dụng công thức nghiệm thu được x1 = 3 (ktm) ; x2 = 1 (tm)

Vậy pt có nghiệm x = 1

a) x2=14−5x⇔x2+5x−14=0x2=14−5x⇔x2+5x−14=0

Δ=52−4.1.(−14)=25+56=81>0√Δ=√81=9x1=−5+92.1=42=2x2=−5−92.1=−142=−7Δ=52−4.1.(−14)=25+56=81>0Δ=81=9x1=−5+92.1=42=2x2=−5−92.1=−142=−7

b)

3x2+5x=x2+7x−2=0⇔2x2−2x+2=0⇔x2−x+1=0Δ=(−1)2−4.1.1=1−4=−3<03x2+5x=x2+7x−2=0⇔2x2−2x+2=0⇔x2−x+1=0Δ=(−1)2−4.1.1=1−4=−3<0

Phương trình vô nghiệm

c)

(x+2)2=3131−2x⇔x2+4x+4+2x−3131=0⇔x2+6x−3127=0Δ=62−4.1.(−3127)=36+12508=12544>0√Δ=√12544=112x1=−6+1122.1=1062=53x2=−6−1122.1=−59(x+2)2=3131−2x⇔x2+4x+4+2x−3131=0⇔x2+6x−3127=0Δ=62−4.1.(−3127)=36+12508=12544>0Δ=12544=112x1=−6+1122.1=1062=53x2=−6−1122.1=−59

d)

(x+3)25+1=(3x−1)25+x(2x−3)2⇔2(x+3)2+10=2(3x−1)2+5x(2x−3)⇔2x2+12x+18+10=18x2−12x+2+10x2−15x⇔26x2−39x−26=0⇔2x2−3x−2=0Δ=(−3)2−4.2.(−2)=9+16=25>0√Δ=√25=5x1=3+52.2=84=2x2=3−52.2=−12

18 tháng 7 2017

a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)

ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0

khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)

thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay

\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)

Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.

18 tháng 7 2017

b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)

ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)

Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)

\(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)

Vậy \(x+y=1;xy=\dfrac{1}{4}\)

Do đó x,y là nghiệm của phương trình:

\(t^2-t+\dfrac{1}{4}=0\)

\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)

Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)

\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)

Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.

21 tháng 1 2018

phương trình 2 ⇔\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}=7-3xy\)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2=7-3xy\)

đoạn sau bạn tự giải nha

10 tháng 4 2017

a,5x2-3x+1=2x+11

\(\Leftrightarrow5x^2-3x+1-2x-11=0\)

\(\Leftrightarrow5x^2-5x-10=0\)

có a-b+c=5+5-10=0

=>\(\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

vậy PT đã cho có 2 nghiệm là x1=-1;x2=2

b/\(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6}\)

=>6x2-20x-5x-25=0

<=>6x2-25x-25=0

<=>(x-5)(6x+5)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\dfrac{-5}{6}\end{matrix}\right.\)

vậy PT đã cho có 2 nghiệm x1=5; x2=\(\dfrac{-5}{6}\)

c.\(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x}\)

=>x2+2x-10=0

\(\Delta^'=1+10=11\)

\(\Delta^'>0\) nên PT có 2 nghiệm phân biệt

x1=-1-\(\sqrt{11}\)

x2=-1+\(\sqrt{11}\)

d, \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1}\) ĐK x\(\ne\pm\dfrac{1}{3}\)

=>2(x+0,5)(3x-1) =2(7x+2)

=>6x2-13x-5=0

\(\Delta=169+120=289\Rightarrow\sqrt{\Delta}=17\)

\(\Delta\)> 0 nên PT có 2 nghiệm phân biệt

x1=\(\dfrac{13-17}{6}=\dfrac{-1}{3}\) (loại)

x2=\(\dfrac{13+17}{6}=\dfrac{5}{2}\) (thỏa mãn)

e,\(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{3}x^2-\left(\sqrt{3}-1\right)x+1-\sqrt{3}=0\)

\(\Delta=\left(\sqrt{3}-1\right)^2-8\sqrt{3}\left(1-\sqrt{3}\right)\)

=\(4-2\sqrt{3}-8\sqrt{3}+24\)

=25-2.5\(\sqrt{3}\)+3 =(5-\(\sqrt{3}\))2

\(\Delta\) >0 nên PT có 2 nghiệm phân biệt

x1=\(\dfrac{\sqrt{3}-1+5-\sqrt{3}}{4\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

x2=\(\dfrac{\sqrt{3}-1-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\)

f/ x2+2\(\sqrt{2}\)x+4=3(x+\(\sqrt{2}\))

\(\Leftrightarrow x^2+\left(2\sqrt{2}-3\right)x+4-3\sqrt{2}=0\)

\(\Delta=8-12\sqrt{2}+9-16+12\sqrt{2}=1\)

\(\Delta\)>0 nên PT đã cho có 2 nghiệm phân biệt

x1=\(\dfrac{3-2\sqrt{2}+1}{2}=2-\sqrt{2}\)

x2=\(\dfrac{3-2\sqrt{2}-1}{2}=1-\sqrt{2}\)

8 tháng 4 2017

a.

\(5x^2-3x+1=2x+11\)\(\Leftrightarrow\)\(5x^2-5x-10=0\)\(\Leftrightarrow\)\(x^2-x-2=0\)\(\Leftrightarrow\)(x-2)(x+1)=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b.

29 tháng 4 2018

a, \(3x^2-2x-5=0\)

\(\Rightarrow\Delta=\left(-2\right)^2-4\times3\times\left(-5\right)\)

\(\Rightarrow\Delta=4+60\)

\(\Rightarrow\Delta=64\)

\(\Rightarrow\sqrt{\Delta}=8\)

vậy phương trình có hai nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+64}{6}=11\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-64}{6}=\dfrac{-62}{6}=\dfrac{-31}{3}\)

b, \(5x^2+2x-16\)

\(\Rightarrow\Delta=2^2-4\times5\times\left(-16\right)\)

\(\Rightarrow\Delta=4+140\)

\(\Rightarrow\Delta=144\)

\(\Rightarrow\sqrt{\Delta}=12\)

vậyphương trình có hai nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-2+12}{10}=\dfrac{10}{10}=1\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-2-12}{10}=\dfrac{-14}{10}=\dfrac{-7}{5}\)