Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\left\{{}\begin{matrix}l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\\l_2=1.2+2.3+3.4+...+2006.2007\end{matrix}\right.\Leftrightarrow l_1.x=l_2\)
Ta có:
\(l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2005.2006}-\dfrac{1}{2006.2007}\right)\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\)
\(l_2=1.2+2.3+3.4+...+2006.2007\)
\(3l_2=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)\)
\(3l_2=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2006.2007.2008-2005.2006.2007\)
\(3l_2=2006.2007.2008\Leftrightarrow l_2=\dfrac{2006.2007.2008}{3}\)
Hay: \(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\right].x=\dfrac{2006.2007.2008}{3}\)
Tới đây thì bấm máy tính là ra :V
Nhã Doanh, ngonhuminh, nguyen thi vang, Hoàng Anh Thư, Mashiro Shiina, Phạm Nguyễn Tất Đạt, F.C, Trần Thị Hồng Ngát, Mến Vũ, kuroba kaito, @Phùng Khánh Linh, Nguyễn Huy Tú, Lightning Farron, Hung nguyen, ...
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007
= 2006/2007
thay vào phương trình ta có phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
còn lại bạn tính nhé
Ta có:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); ...; \(\frac{2}{2005.2006.2007}=\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\)
\(A=\frac{1}{2}\left(\frac{1003.2007-1}{2006.2007}\right)\)
B=1.2+2.3+3.4+...+2006.2007=\(\frac{2006.2007.2008}{3}\)
Ta có: A.x=B => x=B:A = \(\frac{2006.2007.2008}{3}:\left\{\frac{1}{2}.\frac{1003.2007-1}{2006.2007}\right\}=\frac{2006.2007.2008}{3}.\frac{2.2006.2007}{1003.2007-1}\)
=> \(x=\frac{2.2006^2.2007^2.2008}{6039060}=2676.2007^2\)
Đặt \(NCTK=VT\)
\(\Rightarrow2NCTK=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...\)
\(+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(\Rightarrow2NCTK=\frac{1}{2}-\)\(\frac{1}{2006.2007}\)
\(\Rightarrow NCTK=\frac{1}{4}-\frac{1}{2.2006.2007}\)
Đặt \(KN=1.2+2.3+...+2006.2007\)
\(3KN=1.2.3+2.3.\left(4-1\right)+...+2006.2007\left(2008-2005\right)\)
\(=2006.2007.2008\)
\(KN=\frac{2006.2007.2008}{3}\)
...
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007 = 2006/2007
thay vào ta được phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{2005.2006.2007}\)
\(B=1.2+2.3+3.4+....+2006.2007\)
Ta có : \(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)\)
\(B=1.2+2.3+3.4+....+2006.2007\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.5.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)}{3}\)
\(=\frac{1.2.3+2.3.4-1.2.3+3.4.5-...+2006.2007.2008-2005.2006.2007}{3}\)
\(=\frac{2006.2007.2008}{3}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)x=\frac{2006.2007.2008}{3}\)
\(\Rightarrow x=\frac{2006.2007.2008}{3}:\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\right]\)(tự tính)
Bài này không tính nhé tth nghĩ nát óc mới ra :3
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)
\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)
Đến đây rồi tự làm tiếp đi nhé
Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)
\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)
\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
\(S=\dfrac{1009}{2019}\)
Còn lại bạn làm tương tự hết nhé .
Giờ nó bị lỗi nhìn bài làm của you không ra. Khi nào nó hết lỗi t kiểm tra hộ cho xem nó sai chỗ nào. Bắt lỗi người khác là sở trường của t nên yên tâm
...
Từ đó: \(\left(\dfrac{1}{4}-\dfrac{1}{2006.2007.2}\right)x=\dfrac{2006.2007.2008}{3}\)
\(\Rightarrow\dfrac{2006.2007.2-4}{2006.2007.8}.x=\dfrac{2006.2007.2008}{3}\)
\(\Rightarrow x=\dfrac{2006.2007.2008}{3}.\dfrac{2006.2007.8}{2006.2007.2-4}\)
\(\Rightarrow x=\dfrac{2006^2.2007^2.2008.8}{2006.2007.6-12}\)
\(L_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2015.2016.2017}\)
\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\right)\)
\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\right)\)
\(L_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2016.2017}\right)\)
\(L_1=\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\)
\(L_2=1.2+2.3+...+2006.2007\)
\(3L_2=1.2.3+2.3.\left(4-1\right)+...+2006.2007.\left(2008-2005\right)\)
\(3L_2=1.2.3+2.3.4-1.2.3+...+2006.2007.2008-2005.2006.2007\)\(3L_2=2006.2007.2008\)
\(L_2=\dfrac{2006.2007.2008}{3}\)
\(pt\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\right).x=\dfrac{2006.2007.2008}{3}\)
Dễ dàng tìm được x nhé
Xin loi ban nhe, tu dong thu 2 xuong dong thu 3 minh k hieu cho lam, ban ghi ro hon duoc k a !!! Cam on ban rat nhieu, minh muon viet co dau lam nhung cai may cua minh no bi cai quai j roi, nen ban thong cam nhe !!!