Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)
\(t^3+2=2t-2\)
\(\Leftrightarrow t^3-2t+4=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)
\(\Rightarrow t=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)
\(\Leftrightarrow x^2+5x-2=-8\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)
\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).
a, ĐKXĐ: \(-3\le x\le6\)
\(pt\Leftrightarrow3+x+6-x+2\sqrt{\left(3+x\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(3+x\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
b, ĐKXĐ: \(x\ge4\)
\(pt\Leftrightarrow\sqrt{x-4+4\sqrt{x-4}+4}+x+2+\sqrt{x-4}=8\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+x+2+\sqrt{x-4}=8\)
\(\Leftrightarrow\sqrt{x-4}+2+x+2+\sqrt{x-4}=8\)
\(\Leftrightarrow2\sqrt{x-4}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\4\left(x-4\right)=\left(4-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\x^2-12x+32=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
e, Đặt \(y=x-1\) ta có
\(pt\Leftrightarrow\left(y+4\right)^4+\left(y-4\right)^4=1312\)
\(\Leftrightarrow2y^4+192y^2-800=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2=4\\y^2=-100\left(l\right)\end{matrix}\right.\Leftrightarrow y=\pm2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)
b/ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)
Thay \(x=1\) vào pt thấy ko thỏa mãn
Vậy pt vô nghiệm
d/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)
ĐKXĐ: x≥−2x≥−2
2(x2−x+6)=5√x3+82(x2−x+6)=5x3+8
⇔2(x2−x+6)=5√(x+2)(x2−2x+4)⇔2(x2−x+6)=5(x+2)(x2−2x+4)
Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0
⇒2(a2+b2)=5ab⇒2(a2+b2)=5ab
⇔2a2−5ab+2b2=0⇔2a2−5ab+2b2=0
⇔(a−2b)(2a−b)=0⇔(a−2b)(2a−b)=0
⇒[a=2b2a=b⇒[a=2b2a=b ⇒[√x+2=2√x2−2x+42√x+2=√x2−2x+4⇒[x+2=2x2−2x+42x+2=x2−2x+4
⇒[x+2=4(x2−2x+4)4(x+2)=x2−2x+4⇒[x+2=4(x2−2x+4)4(x+2)=x2−2x+4
⇒...
Đừng cho mình nhé ko phải do mình làm chỉ nhờ trang mạng khác để giúp cậu thôi nhé