K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2020

a, ĐK : \(x\ne-1;-2\)

 \(\frac{2}{x+1}-\frac{3}{x+2}=\frac{1}{2}\Leftrightarrow\frac{2\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x+1\right)}\)

Khử mẫu : \(2x+4-3x-3=x^2+x+2x+2\)

\(\Leftrightarrow-x+1=x^2+3x+2\Leftrightarrow-x^2-4x-1=0\)

giải delta nốt nhé ! 

b;c tương tự 

NV
13 tháng 3 2020

a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)

b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)

NV
13 tháng 3 2020

d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)

Đặt \(\left|2x-5\right|=t\ge0\)

\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)

NV
17 tháng 9 2019

a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-9\)

\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)

Vậy pt vô nghiệm

b/ ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)

\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)

c/ ĐKXĐ: \(x\ne\pm4\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2+16=5x^2+2x\)

\(\Rightarrow x=8\)

17 tháng 9 2019

Nguyễn Việt Lâm giúp mk vs. thanks bnn!!!!!

NV
17 tháng 9 2019

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\x\ne2\\x\ne\frac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Đặt \(x^2-x-1=a\) ta được:

\(\frac{4}{a-1}+\frac{2}{a}=5\Leftrightarrow4a+2\left(a-1\right)=5a\left(a-1\right)\)

\(\Leftrightarrow5a^2-11a+2=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-1=2\\x^2-x-1=\frac{1}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\5x^2-5x-6=0\end{matrix}\right.\) (bấm máy)

b/ ĐKXĐ: \(x>2\)

Đặt \(\sqrt{x-2}=a>0\)

\(\frac{4}{a+1}-\frac{1}{a}=1\Leftrightarrow4a-\left(a+1\right)=a\left(a+1\right)\)

\(\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)

\(\Rightarrow\sqrt{x-2}=1\Rightarrow x=3\)

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)

\(\Leftrightarrow4\left(2-3\sqrt{x}\right)-\left(\sqrt{x}+1\right)=3\left(\sqrt{x}+1\right)\left(2-3\sqrt{x}\right)\)

\(\Leftrightarrow9x-10\sqrt{x}+1=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=\frac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{81}\end{matrix}\right.\)

17 tháng 9 2019

Cảm ơn bn nhiều :>

17 tháng 9 2019

Nguyễn Việt Lâm giúp mk vs. thanks bnn!!!!!

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

NV
17 tháng 9 2019

a/ ĐKXĐ: \(x\ne\left\{-\frac{2}{3};\frac{1}{3}\right\}\)

\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow3x=-15\Rightarrow x=-5\)

b/ ĐKXĐ: \(x\ne\left\{-\frac{4}{3};1\right\}\)

\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)

\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)

\(\Leftrightarrow44x=-33\Rightarrow x=-\frac{3}{4}\)

c/ ĐKXĐ: \(x\ne\left\{-\frac{1}{4};0\right\}\)

\(\Leftrightarrow\frac{3\left(x^2-1\right)}{4x+1}+\frac{2\left(1-x^2\right)}{x}-\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{3}{4x+1}-\frac{2}{x}-1\right)=0\)

TH1: \(x^2-1=0\Rightarrow x=\pm1\)

TH2: \(\frac{3}{4x+1}-\frac{2}{x}-1=0\Leftrightarrow3x-2\left(4x+1\right)-x\left(4x+1\right)=0\)

\(\Leftrightarrow4x^2+6x+2=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)

17 tháng 9 2019

thenk kiu :333