K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)

-3x2-5x-2=0

Ta có :-3-(-5)-2=0

=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)

Thay x1;x2 vào M ta được:

M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)

=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)

=\(-\frac{64}{15}\)

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

19 tháng 5 2016

ko phải hơi khó mà là hơi dài -_-",chờ tí nhé

19 tháng 5 2016

a)bình phương 2 vế ta được

\(\sqrt{\left(x-5\right)^2}=\left(x-7\right)^2\)

\(\Leftrightarrow\left(x-5\right)=x^2-14x+49\)

\(\Leftrightarrow\left(x-5\right)-x^2-14x+49=0\)

\(\Leftrightarrow-x^2+15x-54=0\)

Denta:152-4.54=9

\(x_1=-\frac{-15+\sqrt{9}}{2}=9\)

\(x_2=-\frac{-15-\sqrt{9}}{2}=6\)

b)dễ rùi x=7

c)ko hiểu đề 

d)VP hơi lạ

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

9 tháng 11 2021

\(x^2-x+8=4\sqrt{x+3}\)đk : x >= -3

\(\Leftrightarrow x\left(x-1\right)+8-4\sqrt{x+3}=0\)

Đặt \(\sqrt{x+3}=t;\Rightarrow x+3=t^2\Leftrightarrow x=t^2-3;x-1=t^2-4\)

khi đó : \(\left(t^2-3\right)\left(t^2-4\right)+8-4t=0\)

\(\Leftrightarrow t^4-7t^2+20-4t=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2-3t-10\right)=0\)

\(\Leftrightarrow t=2;t=\frac{-4+2i}{2}\left(loại\right);\frac{-4-2i}{2}\left(loại\right)\)

Theo cách đặt \(\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)

8 tháng 11 2021

xin vui lòng giúp em, em rất rất gấp!!

14 tháng 8

Giải:

\(\sqrt{4 x + 1} - \sqrt{3 x - 2} = \frac{x + 3}{5} , x \geq \frac{2}{3}\)

Chuyển vế và bình phương:

\(\sqrt{4 x + 1} = \frac{x + 3}{5} + \sqrt{3 x - 2}\) \(4 x + 1 = \frac{\left(\right. x + 3 \left.\right)^{2}}{25} + 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2} + \left(\right. 3 x - 2 \left.\right)\)

Đưa hạng chứa căn sang một phía:

\(x + 3 - \frac{\left(\right. x + 3 \left.\right)^{2}}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\) \(\frac{\left(\right. x + 3 \left.\right) \left(\right. 22 - x \left.\right)}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\)

\(x \geq \frac{2}{3} \Rightarrow x \neq - 3\), chia cho \(x + 3\) và nhân quy đồng:

\(22 - x = 10 \sqrt{3 x - 2}\)

Bình phương lần nữa:

\(\left(\right.22-x\left.\right)^2=100\left(\right.3x-2\left.\right)\Longrightarrow x^2-344x+684=0\)

⇒x ∈ {2,342}

Kiểm tra với phương trình gốc:

  • \(x = 2 : \textrm{ }\textrm{ } \sqrt{9} - \sqrt{4} = 1 = \frac{2 + 3}{5}\) (đúng).
  • \(x = 342 : \textrm{ }\textrm{ } 37 - 32 = 5 \neq \frac{345}{5} = 69\) (loại).

Vậy nghiệm duy nhất là : \(x = 2\).

ĐKXĐ: \(x\ge\frac23\)

Ta có: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)

=>\(\sqrt{4x+1}-3+2-\sqrt{3x-2}=\frac{x+3}{5}-1\)

=>\(\frac{4x+1-9}{\sqrt{4x+1}+3}+\frac{4-3x+2}{2+\sqrt{3x-2}}=\frac{x-2}{5}\)

=>\(\frac{4x-8}{\sqrt{4x+1}+3}+\frac{-3\left(x-2\right)}{\sqrt{3x-2}+2}=\frac{x-2}{5}\)

=>\(\left(x-2\right)\left(\frac{4}{\sqrt{4x+1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac15\right)=0\)

=>x-2=0

=>x=2(nhận)