K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow x^2-5x+5-9x^2+27x+2x-6=1\)

\(\Leftrightarrow-8x^2+24x-2=0\)

\(\Leftrightarrow8x^2-24x+2=0\)

\(\text{Δ}=\left(-24\right)^2-4\cdot8\cdot2=512>0\)

Do đó: PHương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3+2\sqrt{2}}{2}\\x_2=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)

c: \(\Leftrightarrow x^2-2x+1-3\left|x-1\right|+2=0\)

\(\Leftrightarrow\left(\left|x-1\right|\right)^2-3\left|x-1\right|+2=0\)

\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x-1\right|-2\right)=0\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

d: \(\Leftrightarrow x^4-4x^2+4+5\left|x^2-2\right|+4=0\)

\(\Leftrightarrow\left(\left|x^2-2\right|\right)^2+5\left|x^2-2\right|+4=0\)(vô lý)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

1.

\((x^2-6x)^2-2(x-3)^2+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)

Đặt $x^2-6x=a$ thì pt trở thành:

$a^2-2a-16=0$

$\Leftrightarrow a=1\pm \sqrt{17}$

Nếu $a=1+\sqrt{17}$

$\Leftrightarrow x^2-6x=1+\sqrt{17}$

$\Leftrightarrow (x-3)^2=10+\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$

Nếu $a=1-\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$

Vậy.........

2.

$x^4-2x^3+x=2$

$\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x-2)(x^3+1)=0$

$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$

Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$

$\Rightarrow x=2$ hoặc $x=-1$

Vậy.......

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

1.

ĐKXĐ: $x\neq 1$. Ta có:

\(x^2+(\frac{x}{x-1})^2=8\)

\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)

Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:

$a^2=8+2a$

$\Leftrightarrow (a-4)(a+2)=0$

Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$

$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)

Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$

$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)

Vậy........

2. ĐKXĐ: $x\neq 0; 2$

$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$

$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:

$4a^2-2a=\frac{40}{49}$

$\Rightarrow 2a^2-a-\frac{20}{49}=0$

$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$

$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$

$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.

Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý

Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$

$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$

Vậy........

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

23 tháng 3 2020

bấm máy tính casio là ra đc đấy :))

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2

23 tháng 4 2021

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

23 tháng 4 2021

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)

26 tháng 2 2019

a , 2x -3 = 5x + 6

    2x -5x=6+3

    -3x = 9

     x =9 :(-3)

   x= -3

26 tháng 2 2019

a) 2x-5x=3+6

-3x=9

x=-3

vậy........

b)(2x+1).(3x-2)-(5x-8).(2x+1)=0

(2x+1).(3x-2-2x-1)=0

(2x-1).(x-3)=0

==>x=1/2 ; x=3

c)(2x+1).5-(7x+5)=(2x-2).3

10x+5-7x-5=6x-6

3x=6x-6

3x-6x=6

-3x=6

x=-2

11 tháng 5 2018

a/ \(2x+\left|x+1\right|=3\Leftrightarrow\left|x+1\right|=3-2x\)

+) TH1: Với \(x\ge-1\) có:

x + 1 = 3 - 2x <=> 3x = 2 <=> \(x=\dfrac{2}{3}\left(tm\right)\)

+) Với \(x< -1\) có:

x + 1 = 2x - 3 <=> -x = -4 <=> x = 4 (ktm)

Vậy pt có 1 nghiệm x = 2/3

b/ \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\Rightarrow x=4\end{matrix}\right.\)

Vậy pt có 2 nghiệm.........

c/ \(x^2-3x+2=0\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

d/ \(\left|2x+3\right|=5\Leftrightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

11 tháng 5 2018

a, 2x + \(\left|x-1\right|\)=3

\(\left|x-1\right|\) = 3 - 2x

Ta có : |x-1|= x-1 khi x-1≥0 hay x≥1

|x-1|= -(x-1) khi x-1 < 0 hay x<1

Xét TH1:

|x-1|= 3 - 2x (ĐK: x ≥ 1 )

↔ x-1 = 3 - 2x

↔x + 2x = 3 +1

↔ 3x = 4

↔ x = \(\dfrac{4}{3}\) (nhận)

Xét TH2:

|x-1| = 3 - 2x (ĐK : x<1)

↔ - (x-1) = 3 - 2x

↔ -x +1 = 3 - 2x

↔ -x + 2x = 3-1

↔ x = 2 (loại)

Vậy tập nghiệm của phương trình là S = { \(\dfrac{4}{3}\) }

b, x\(^2\) - 4x =0

↔ x*(x - 4) = 0

↔x =0 ;

x-4=0

↔ x = 0 (nhận) ;

x = 4(nhận)

Vậy tập nghiệm của phương trình là S = { 0 ;4 }

c, x\(^2\) - 3x +2 = 0

↔ x\(^2\) - 2x - x + 2 = 0

↔ ( x\(^2\) - 2x ) - (x -2 ) = 0

↔ x* ( x - 2 ) - ( x - 2) *1 = 0

↔ ( x - 2 )*( x - 1 ) = 0

↔ x - 2 = 0 ;

x - 1 = 0

↔ x = 2 ( nhận );

x = 1 ( nhận )

Vậy tập nghiệm của phương trình là S = {2 ; 1 }

d, | 2x + 3 | = 5

Ta có :

| 2x + 3 | = 2x + 3 khi 2x + 3 ≥ 0 hay 2x ≥ -3 ↔ x ≥ \(\dfrac{-3}{2}\)

| 2x + 3 | = - (2x +3) khi 2x + 3 < 0 hay 2x < -3 ↔ x <\(\dfrac{-3}{2}\)

Xét TH1:

| 2x + 3 | = 5 (ĐK : x ≥ \(\dfrac{-3}{2}\))

↔ 2x + 3 = 5

↔ 2x = 5 - 3

↔ 2x = 2

↔ x = 1 (nhận)

Xét TH2 :

| 2x + 3 | = 5 (ĐK : x < \(\dfrac{-3}{2}\) )

↔ -(2x + 3 ) = 5

↔ -2x - 3 = 5

↔ -2x = 5 + 3

↔ -2x = 8

↔ x = -4 (nhận )

Vậy tập nghiệm của phương trình là S = { 1 ; -4 }