K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

aVT=.\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

=\(a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

=\(2a^2+2b^2+2c^2+2ab+2ac+2bc\)

VP=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)=\(a^2+2ab+b^2+b^2+2bc+b^2+a^2+2ac+c^2\)

=\(2a^2+2b^2+2c^2+2ab+2bc+2ac\)

Vậy VT=VP

28 tháng 6 2017

a)\(\text{(a+b+c)^2 +a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2}\)

Ta có:

\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

b) Câu b sao chỉ có một vế vậy , hằng đẳng thức thì phải có hai vế chứ