Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+5)(x+2)= 3(4x-3)+ (x-5)2
\(\Leftrightarrow\) x2+2x+5x+10 = 12x-9+x2-10x+25
\(\Leftrightarrow\) 5x+10 = -9+25
\(\Leftrightarrow\) 5(x+2) = 16
\(\Leftrightarrow\) x+2 = \(\dfrac{16}{5}\)
\(\Leftrightarrow\) x = \(\dfrac{26}{5}\)
b) 12-2(1-x)2 = 4(x-2)- (x-3)(2x-5)
\(\Leftrightarrow\) 12-2(1-2x+x2) = (4x-8) - (2x2-5x-3x+15)
\(\Leftrightarrow\) 12-2+4x-2x2 = 4x-8-2x2+5x+3x-15
\(\Leftrightarrow\) 10 = 8x-23
\(\Leftrightarrow\) 33 = 8x
\(\Leftrightarrow\) x = \(\dfrac{33}{8}\)
a, <=>(X4 -X3)+(3X3 -3X2)+(8X2-8X)+(12X-12)=0
<=>X3(X-1)+3X2(X-1)+8X(X-1)+12(X-1)=0
<=>(X3+3X2+8X+12)(X-1)=0
<=>[(X3+2X2)+(X2+2X)+(6X+12)](X-1)=0
<=>[(X+2)+X(X+2)+6(X+2)](X-1)=0
<=>(X2+X+6)(X+2)(X-1)=0
Vì X2+X+6=X2+2.X++=(X+)2+ >0
=>(X+2)(X-1)=0
<=>X+2=0 hoặc X-1=0
*X+2=0 <=>X=-2
*X-1=0 <=>X=1
Vậy....................
b, Bạn nên xem lại đầu bài
a) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Vì \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
\(\frac{\left(x^2-8\right)}{92}-1+\frac{\left(x^2-7\right)}{93}-1=\frac{\left(x^2-6\right)}{94}-1+\frac{\left(x^2-5\right)}{95}-1\)
\(\Rightarrow\frac{\left(x^2-100\right)}{92}+\frac{\left(x^2-100\right)}{93}-\frac{\left(x^2-100\right)}{94}-\frac{\left(x^2-100\right)}{95}=0\)
\(\Rightarrow\left(x^2-100\right)\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)=0\)
\(\Rightarrow x^2-100=0\)(vi \(\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)\ne0\)
\(\Rightarrow x=\pm10\)
\(\frac{x^2-8}{92}+\frac{x^2-7}{93}=\frac{x^2-6}{94}+\frac{x^2-5}{95}\)
\(\Leftrightarrow\left(\frac{x^2-8}{92}-1\right)+\left(\frac{x^2-7}{93}-1\right)=\left(\frac{x^2-6}{94}-1\right)+\left(\frac{x^2-5}{95}-1\right)\)
\(\Leftrightarrow\frac{x^2-100}{92}+\frac{x^2-100}{93}-\frac{x^2-100}{94}-\frac{x^2-100}{95}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-10\end{cases}}}\)
V...
a, \(x\left(x-4\right)=x\left(x+5\right)-12\)
\(\Rightarrow x^2-4x=x^2+5x-12\)
\(\Rightarrow x^2-4x-x^2-5x=-12\)
\(\Rightarrow-9x=-12\Rightarrow x=\frac{12}{9}\)
a) \(x\left(x-4\right)=x\left(x+5\right)-12\)
\(\Leftrightarrow x^2-4x=x^2+5x-12\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow x=\frac{4}{3}\)
\(S=\left\{\frac{4}{3}\right\}\)
b) \(x^2+8=x\left(x-30\right)\)
\(\Leftrightarrow x^2+8=x^2-30x\)
\(\Leftrightarrow30x=-8\)
\(\Leftrightarrow=\frac{-4}{15}\)
\(S=\left\{\frac{-4}{15}\right\}\)