\(x^3=x^4+x^3+x^2+x+2\)

b)\(2\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

28 tháng 6 2018

a) \(13-\sqrt{\left(8x-1\right)^2}=\sqrt{x^2}\) (*)

\(\Leftrightarrow13-\left|8x-1\right|=\left|x\right|\)

Th1: \(8x-1\ge0\Leftrightarrow x\ge\dfrac{1}{8}\)

(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(N\right)\)

Th2: \(x\le0\)

(*) \(\Leftrightarrow13+8x-1=-x\Leftrightarrow9x=-12\Leftrightarrow x=-\dfrac{4}{3}\left(N\right)\)

Th3: \(\left\{{}\begin{matrix}8x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\dfrac{1}{8}\le x\le0\) (vô lý)

Th4: \(\left\{{}\begin{matrix}8x-1\le0\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\dfrac{1}{8}\)

(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(L\right)\)

Kl: x= 14/9 , x= -4/3

28 tháng 6 2018

b) \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(2x+3\right)^2}=3\Leftrightarrow\left|x+1\right|+\left|2x+3\right|=3\)(*)

Th1: \(x\ge-1\)

(*) \(\Leftrightarrow x+1+2x+3=3\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\left(N\right)\)

Th2: \(x\le-\dfrac{3}{2}\)

(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(N\right)\)

Th3: \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow-1\le x\le-\dfrac{3}{2}\) (vô lý)

Th4: \(\left\{{}\begin{matrix}x+1\le0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}\le x\le-1\)

(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(L\right)\)

Kl: x= -1/3 , x= -7/3

2 tháng 8 2018

\(a.\left(\sqrt{x}-7\right)\left(\sqrt{x}-8\right)=x+11\left(x\ge0\right)\)

\(\Leftrightarrow x-15\sqrt{x}+56=x+11\)

\(\Leftrightarrow15\sqrt{x}=45\)

\(\Leftrightarrow x=9\left(TM\right)\)

\(b.\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)=x-17\left(x\ge0\right)\)

\(\Leftrightarrow x-2\sqrt{x}-15=x-17\)

\(\Leftrightarrow2\sqrt{x}=2\)

\(x=1\left(TM\right)\)

\(c.1-\dfrac{2\sqrt{x}-5}{6}=\dfrac{3-\sqrt{x}}{4}\left(x\ge0\right)\)

\(\Leftrightarrow\dfrac{2\left(2\sqrt{x}-5\right)+3\left(3-\sqrt{x}\right)}{12}=1\)

\(\Leftrightarrow x=169\left(TM\right)\)

\(d.\left(\sqrt{x}+3\right)^2-x+3=0\left(x\ge0\right)\)

\(\Leftrightarrow6\sqrt{x}=-12\left(vô-lý\right)\)

KL...............

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

Câu 1: 

a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\) 

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)

hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)