\(ax^3+bx^2+cx+d=0\)

biết 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

\(f\left(x\right)=ax^3+bx^2+cx+d\)

a,b,c,d lập thành cấp số nhân công bội q \(\Rightarrow\left\{{}\begin{matrix}q\ne\left\{0,1\right\}\\a\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=a.q\\c=aq^2\\d=aq^3\end{matrix}\right.\)

\(f\left(x\right)=a.x^3+a.q.x^2+a.q^2.x+a.q^3\)(1)

\(f\left(x\right)=a\left[.x^3+q.x^2+q^2.x+q^3\right]\)

\(f\left(x\right)=a.\left[.x^2\left(x+q\right)+q^2\left(.x+q\right)\right]\)

\(f\left(x\right)=a.\left(x+q\right)\left(x^2+q^2\right)\)

\(\left\{{}\begin{matrix}a,q\ne0\\f\left(x\right)=0\end{matrix}\right.\)\(\Rightarrow x=-q\) là nghiệm duy nhất

4 tháng 4 2017

Trong bài này ta áp dụng công thức tinh số hạng tổng quát un = u1.qn-1, biết hai đại lượng, ta sẽ tìm đại lượng còn lại:

a) q = 3.

b) u1 =

c) Theo đề bài ta có un = 192, từ đó ta tìm được n. Đáp số: n =7



25 tháng 5 2017

a)
\(\dfrac{u_6}{u_1}=q^5=\dfrac{486}{2}=243=3^5\) . Suy ra: \(q=3\).
b)
\(u_4=u_1q^3=u_1.\left(\dfrac{2}{3}\right)^3=\dfrac{8}{21}\)\(\Rightarrow u_1=\dfrac{9}{7}\).
c) \(u_n=3.\left(-2\right)^{n-1}=192\)\(\Leftrightarrow\left(-2\right)^{n-1}=64=\left(-2\right)^6\)\(\Leftrightarrow n-1=6\)\(\Leftrightarrow n=7\).
Vậy số hạng thứ 7 bằng 192.

4 tháng 4 2017

Ta có: un= u1.qn-1

a) Nếu

\(\left\{{}\begin{matrix}q>0\\u_1< 0\end{matrix}\right.\Rightarrow u_n< 0\forall n\)

b) Nếu

\(\left\{{}\begin{matrix}q< 0\\u_1< 0\end{matrix}\right.\)

Thì un < 0 khi n – 1 chẵn và un > 0 khi n – 1 lẻ.

NV
23 tháng 5 2019

À cái kết luận đó liên quan tới lý thuyết đồ thị của các hàm bậc 3 mà lên lớp 12 mới học nên bạn thấy hơi lạ là đúng rồi :(

Bạn cứ hiểu hàm bậc 3 p(x) là một hàm mà miền giá trị của nó luôn chạy từ \(\left(-\infty;+\infty\right)\) bất chấp các hệ số A, B, C, D bằng bao nhiêu, do đó luôn chọn được 1 giá trị x nào đó sao p(x) nằm trên miền dương.

Đồng thời khi A<0 thì ta có \(\lim\limits_{x\rightarrow+\infty}p\left(x\right)=-\infty\) nên luôn tồn tại 1 giá trị x đủ lớn làm cho p(x) âm.

Hay bạn cứ nghĩ đơn giản cho A, B, C, D các giá trị bất kì trong đó A<0, rồi cho x một giá trị lớn cỡ vài tỉ thì kiểu gì p(x) cũng âm

NV
22 tháng 5 2019

Bạn cần ghi đầy đủ bài toán, ghi thiếu thế này thì chịu thua thôi bạn ạ

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

10 tháng 6 2017

giống hệt đáp ánhum

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

3 tháng 4 2017

a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2

⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =

3 tháng 4 2017

b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.

Đặt α = arccos thì phương trình trở thành

cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π

⇔ x = , k ∈ Z (trong đó α = arccos).