Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0
<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0
<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0
<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0
<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0
<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0
<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0
<=> (2x - 1)(x - 1)2(x - 2) = 0
<=> 2x - 1=0
hoặc x - 1 = 0
hoặc x - 2 = 0
<=> x = 1/2
hoặc x = 1
hoặc x = 2
Vậy S = {1/2; 1; 2}
a) \(x^2-16=0\Rightarrow x^2=16\Rightarrow x^2=\pm4\)
b) \(4x^2-9=0\Rightarrow\left(2x-3\right)\left(2x+3\right)=0\Rightarrow x=\pm1,5\)
c) \(25x^2-1=0\Rightarrow\left(5x-1\right)\left(5x+1\right)=0\Rightarrow x=\pm0,2\)
d) \(4\left(x-1\right)^2-9=0\Rightarrow\left(2x-2-3\right)\left(2x-2+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-5=0\Rightarrow x=2,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(25x^2-\left(5x+1\right)^2=0\Rightarrow\left(5x+5x+1\right)\left(5x-5x-1\right)=0\Rightarrow10x+1=0\Rightarrow x=-0,1\)
f) \(\dfrac{1}{4}-9\left(x-1\right)^2=0\Rightarrow\left(\dfrac{1}{2}+3x-3\right)\left(\dfrac{1}{2}-3x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)
g) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\Rightarrow\left(\dfrac{1}{4}+2x+\dfrac{3}{4}\right)\left(\dfrac{1}{4}-2x-\dfrac{3}{4}\right)=0\Rightarrow\left[{}\begin{matrix}x=-0,5\\x=-0,25\end{matrix}\right.\)
h) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=0\Rightarrow\left(\dfrac{1}{3}x-1\right)^2=0\Rightarrow\dfrac{1}{3}x=1\Rightarrow x=3\)
k) \(4\left(x-3\right)^2-\left(2-3x\right)^2=0\Rightarrow\left(2x-6+2-3x\right)\left(2x-6-2+3x\right)=0\Rightarrow\left[{}\begin{matrix}-x-4=0\Rightarrow x=-4\\5x-8=0\Rightarrow x=1,6\end{matrix}\right.\)
l) \(x^2-x-12=0\Rightarrow x^2-4x+3x-12=0\Rightarrow x\left(x-4\right)+3\left(x-4\right)=0\Rightarrow\left(x+3\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
1)\(6x^2-20x+6=0\)
<=>\(6x^2-18x-2x+6=0\)
<=>6x(x-3)-2(x-3)=0
<=>(6x-2)(x-3)=0
<=>6x-2=0
hoặc x-3=0
<=>x=\(\frac{1}{3}\)
hoặc x=3
Vậy...
2)\(8x^2+10x-3=0\)
=>\(8x^2-2x+12x-3=0\)
<=>2x(4x-1)+3(4x-1)=0
<=>(2x+3)(4x-1)=0
<=>2x+3=0<=>x=\(\frac{3}{2}\)
hoặc 4x-1=0<=>x=\(\frac{1}{4}\)
Vậy ........
3)Phương trình tương đương: \(4x^2-2x+10x-5=0\)
<=> 2x(2x-1)+5(2x-1)=0
<=> (2x+5)(2x-1)=0
Giải ra các trường hợp là xong
4)Phương trình tương đương:\(x^2-10x+25-1=0\)
<=>\(\left(x-5\right)^2-1^2=0\)
<=>(x-5-1)(x-5+1)=0
<=>(x-6)(x-4)=0 Giải các TH nữa là xong
5)\(x^2-5x-24\)=0
<=>\(x^2-8x+3x-24=0\)
<=>x(x-8)+3(x-8)=0
<=>(x+3)(x-8)=0
Giải ra các nghiệm nữa là xong
6)Phương trình tương đương :\(x^4+6x^2+9-9x^2=0\)
<=> \(\left(x^2+3\right)^2-\left(3x\right)^2\)
<=> \(\left(x^2+3x+3\right)\left(x^2-3x+3\right)\)=0
Đến đây tự làm nhé
7)Phương trình tương đương :\(4x^4-12x^2+9-8=0\)
<=>\(\left(2x-3\right)^2-\sqrt{8}^2\)=0
<=>(2x-3-\(\sqrt{8}\))\(\left(2x-3+\sqrt{8}\right)\)=0
Đến đây dễ rồi
a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)
b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)
c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)
d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)
\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)
e)\(6x^3-17x^2+14x-3\)
Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)
\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)
\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)
Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)
Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)
h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)
Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@
B1: Phân tích thành nhân tử:
a) \(6x^2+9x=3x\left(2x+3\right)\)
b) \(4x^2+8x=4x\left(x+2\right)\)
c) \(5x^2+10x=5x\left(x+2\right)\)
d) \(2x^2-8x=2x\left(x-4\right)\)
e) \(5x-15y=5\left(x-3y\right)\)
f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)
\(=\left(x-1-2y\right)\left(x-1+2y\right)\)
h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)
i) \(9x^2-18x+9=\left(3x-3\right)^2\)
k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)
m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)
\(=-\left(2x-y\right)^2\)
n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)
\(=\left(x-31\right)\left(x+1\right)\)
o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)
\(=\left(2+x\right)\left(8+x\right)\)
p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
Bài 1 :
a ) \(6x^2+9x=3x\left(x+3\right)\)
b ) \(4x^2+8x=4x\left(x+2\right)\)
c ) \(5x^2+10x=5x\left(x+2\right)\)
d ) \(2x^2-8x=2x\left(x-4\right)\)
e ) \(5x-15y=5\left(x-3y\right)\)
f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)
i ) \(9x^2-18x+9=\left(3x-3\right)^2\)
k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)
l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)
m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)
n ) \(\left(x-15\right)^2=x^2-30x+15^2\)
o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)
Bài 2 :
a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)
b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)
c ) \(2x+x^2-2y-2xy=......................\)
d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)
=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)
=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)
=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)
Ta thấy: \((5x-2)^2\ge0\)
=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)
2. \(f\left(x\right)=4x^2-28x+50\)
=> \(f\left(x\right)=(4x^2-28x+49)+1\)
=> \(f\left(x\right)=(2x-7)^2+1\)
Ta thấy: \((2x-7)^2\ge0\)
=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)
3. \(f\left(x\right)=-16x^2+72x-82\)
=> \(f\left(x\right)=-(16x^2-72x+82)\)
=> \(f\left(x\right)=-(16x^2-72x+81+1)\)
=> \(f\left(x\right)=-[(4x-9)^2+1]\)
Ta thấy: \((4x-9)^2\ge0\)
=> \((4x-9)^2+1\ge1>0\)
=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)
5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)
=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)
=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)
Ta thấy: \((2x-3)^2\ge0\)
\((3y+1)^2\ge0\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)
a: \(=\dfrac{5}{2}x-2x+\dfrac{7}{2}=\dfrac{1}{2}x+\dfrac{7}{2}\)
b: \(=\dfrac{-1}{4}x^4-3x^2+\dfrac{9}{4}x\)
c: \(=\dfrac{1}{5}x+\dfrac{1}{15}xy+\dfrac{7}{10}x^2\)
d: \(=-9x^3-1-12y+27xy\)