\(\frac{3x^2+7x-10}{^x}=0\)

Giúp với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

\(\frac{3x^2+7x-10}{x}=0\)

\(3x^2+7x-10=0\)

\(3x^2-3x+10x-10=0\)

\(3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\left(3x+10\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+10=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-10}{3}\\x=1\end{cases}}\)

21 tháng 2 2018

\(ĐKXĐ:\)\(x\ne0\)

       \(\frac{3x^2+7x-10}{x}=0\)

\(\Rightarrow\)\(3x^2+7x-10=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\3x+10=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\left(TMĐKXĐ\right)\\x=-\frac{10}{3}\left(TMĐKXĐ\right)\end{cases}}\)

Vậy...

22 tháng 3 2020

$a)\dfrac{3{{x}^{2}}+7x-10}{x}=0$

ĐK: $x\ne 0$

$\begin{align}

& Pt\Leftrightarrow 3{{x}^{2}}-3x+10x-10=0 \\

& \Leftrightarrow 3x\left( x-1 \right)+10\left( x-1 \right)=0 \\

& \Leftrightarrow \left( x-1 \right)\left( 3x+10 \right)=0 \\

& \Leftrightarrow \left[ \begin{align}

& x-1=0 \\

& 3x+10=0 \\

\end{align} \right.\Leftrightarrow \left[ \begin{align}

& x=1 \\

& x=-\dfrac{10}{3} \\

\end{align} \right.\left( tm \right) \\

\end{align}$

$b)\dfrac{4x-17}{2{{x}^{2}}+1}=0$

ĐK: $x\in \mathbb{R}$

$Pt\Leftrightarrow 4x-17=0\Rightarrow x=\dfrac{17}{4}\left( tm \right)$

22 tháng 3 2020
https://i.imgur.com/JzprAuk.jpg
10 tháng 4 2020

\(b, (2x^2 + 3x-1) - 5(2x^2 + 3x + 2) + 24 =0 \)

Đặt \(2x^2 + 3x + 1 = a \)

\(=> (a-2) - 5(a+2) + 24 = 0\)\(\)

\(=> a - 2 - 5a - 10 + 24 = 0\)

\(=> a = 3=> 2x^2 + 3x + 1 = 3\)

\(<=> 2x^2 + 3x - 2 = 0\)

\(<=> 2x^2 + 4x - x - 2 = 0\)

\(<=> (2x-1)(x+2) = 0 \)

\(<=> 2x - 1 = 0 hoặc x+2 =0\)

\(<=> x = 1/2 hoặc x = -2\)

~~

20 tháng 1 2019

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{2;-1;-2\right\}\)

Vậy....

20 tháng 1 2019

c, \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)

Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)

b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt: \(x^2-7=t\left(t\ge-7\right)\)

Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)

\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)

Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)

a, \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)

24 tháng 3 2020

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thức

2 tháng 3 2019

a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)

b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)

c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)

11 tháng 2 2020

\(\frac{5x-3}{6}-\frac{7x-1}{4}-\frac{4x+2}{7}+5=0\)

<=> \(\frac{14\left(5x-3\right)-21\left(7x-1\right)-12\left(4x+2\right)+420}{84}=0\)

<=> 70x - 42 - 147x + 21 - 48x -24 + 420 = 0

<=> -125x + 375 = 0

<=> -125x = -375

<=> x = 3

Vậy S = {3}

\(\frac{3\left(2x+1\right)}{4}-5-\frac{3x+2}{10}=\frac{2\left(3x-1\right)}{5}\)

<=> \(\frac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\frac{8\left(3x-1\right)}{20}\)

<=> 30x + 15 - 100 - 6x - 4 = 24x - 8

<=> 24x - 24x = -8 + 89

<=> 0x = 81

=> pt vô nghiệm

22 tháng 4 2019

a)

voi x=0 ta thay 0 o phai la no pt

voi x<>0 chia ca 2 ve cho x^2 ta dc

x^2-3x+6-3/x+1/x^2=0

(x^2+1/x^2)-3(x+1/x)+6=0 dat a=x+1/x ta co (x+1/x)^2=a^2=>x^2+1/x^2=a^2-2

=>a^2-3a+4=0=>pt vo no :(

17 tháng 2 2019

\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)

Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)