Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
bài 1:
b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)
<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)
=>\(x^2+4x+4=x^2+5x+4+x^2\)
<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)
<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)
vậy...............
d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
vậy............
bài 3:
g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
=>\(4x-8-2x-2=x+3\)
<=>\(x=13\)
vậy..............
mấy ý khác bạn làm tương tụ nhé
chúc bạn học tốt ^ ^
nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs
a) \(\dfrac{2x-9}{2x-5}+\dfrac{3x}{3x-2}=2\)
\(\Rightarrow\dfrac{2x-5-4}{2x-5}+\dfrac{3x-2+2}{3x-2}=2\)
\(\Rightarrow1-\dfrac{4}{2x-5}+1+\dfrac{2}{3x-2}=2\)
\(\Rightarrow\dfrac{4}{2x-5}+\dfrac{2}{3x-2}=0\)
\(\Rightarrow\dfrac{12x-8}{\left(2x-5\right)\left(3x-2\right)}+\dfrac{4x-10}{\left(2x-5\right)\left(3x-2\right)}=0\)
\(\Rightarrow\dfrac{16x-18}{\left(2x-5\right)\left(3x-2\right)}=0\)
\(\Rightarrow16x-18=0\)
\(\Rightarrow x=\dfrac{18}{16}=\dfrac{9}{8}\)
b) \(\dfrac{x+2}{2002}+\dfrac{x+5}{1999}+\dfrac{x+201}{1803}=-3\)
\(\Rightarrow\dfrac{x+2}{2002}+1+\dfrac{x+5}{1999}+1+\dfrac{x+201}{1803}+1=0\)
\(\Rightarrow\dfrac{x+2004}{2002}+\dfrac{x+2004}{1999}+\dfrac{x+2004}{1809}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{1999}+\dfrac{1}{1809}\right)=0\)
Vì \(\left(\dfrac{1}{2002}+\dfrac{1}{1999}+\dfrac{1}{1809}\right)\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
c) \(\left(2x^2+3x+1\right)\left(2x^2+5x+3\right)=18\)
\(\Rightarrow\left(2x+1\right)\left(x+1\right)\left(x+1\right)\left(2x+3\right)=18\)
\(\Rightarrow\left(x+1\right)^2\left(2x+1\right)=18\)
Thôi, xử tiếp đi nhé :)))))
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)
d: \(\dfrac{x+3}{2-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)
hay \(x\in[-3;2)\)
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
a) \(x^2+6x+9=144\)
\(\Leftrightarrow\left(x+3\right)^2=12^2\)
\(\Leftrightarrow x+3=12\)
\(\Leftrightarrow x=9\)
\(\text{a) }x^2+6x+9=144\\ \Leftrightarrow\left(x^2+6x+9\right)-144=0\\ \Leftrightarrow\left(x+3\right)^2-12^2=0\\ \Leftrightarrow\left(x+3+12\right)\left(x+3-12\right)=0\\ \Leftrightarrow\left(x+15\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+15=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-15\\x=9\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{9;-15\right\}\)
\(\dfrac{x-19}{1999}+\dfrac{x-23}{1995}+\dfrac{x+82}{700}=5\\ \Leftrightarrow\left(\dfrac{x-19}{1999}-1\right)+\left(\dfrac{x-23}{1995}-1\right)+\left(\dfrac{x+82}{700}-3\right)=0\\ \Leftrightarrow\dfrac{x-2018}{1999}+\dfrac{x-2018}{1995}+\dfrac{x-2018}{700}=0\\ \Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{1999}+\dfrac{1}{1995}+\dfrac{1}{700}\right)=0\\ \Leftrightarrow x-2018=0\left(\text{Vì }\dfrac{1}{1999}+\dfrac{1}{1995}+\dfrac{1}{700}\ne0\right)\\ \Leftrightarrow x=2018\)
Vậy nghiệm của phương trình là \(x=2018\)
\(\text{c) }x^3-3x^2+4=0\\ \Leftrightarrow x^3-2x^2-x^2+4=0\\ \Leftrightarrow\left(x^3-2x^2\right)-\left(x^2-4\right)=0\\ \Leftrightarrow x^2\left(x-2\right)-\left(x+2\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-2x+x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-2x\right)+\left(x-2\right)\right]\left(x-2\right)=0\\ \Leftrightarrow\left[x\left(x-2\right)+\left(x-2\right)\right]\left(x-2\right)=0\\\Leftrightarrow \left(x+2\right)\left(x-2\right)^2=0\\\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right. \)
Vậy tập nghiệm phương trình là \(S=\left\{-2;2\right\}\)