Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>(x+4)(x+7)=54
=>x^2+11x+28-54=0
=>(x+13)(x-2)=0
=>x=-13 hoặc x=2
b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)
=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)
=>x^2+6x+5=12
=>x^2+6x-7=0
=>(x+7)(x-1)=0
=>x=-7 hoặc x=1
b) \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x\left(x+4\right)+5\left(x+4\right)}+\dfrac{1}{x\left(x+5\right)+6\left(x+5\right)}+\dfrac{1}{x\left(x+6\right)+7\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7}{\left(x+4\right)\left(x+7\right)}-\dfrac{x+4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28-54=0\)
\(\Leftrightarrow x^2-2x+13x-26=0\)
\(\Leftrightarrow x\left(x-2\right)+13\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\) x - 2 = 0 hoặc x + 13 = 0
\(\Leftrightarrow\) x = 2 hoặc x = -13
Vậy x = 2 hoặc x = -13.
a: \(\Leftrightarrow\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=\dfrac{-x}{2\left(x-3\right)}\)
\(\Leftrightarrow x\left(x-3\right)-4x=-x\left(x+1\right)\)
\(\Leftrightarrow x^2-3x-4x+x^2+x=0\)
\(\Leftrightarrow2x^2-6x=0\)
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
b: \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\text{Δ}=11^2-4\cdot1\cdot\left(-26\right)=121+104=225>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-11-15}{2}=\dfrac{-26}{2}=-13\\x_2=\dfrac{-11+15}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)
ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) ĐKXĐ:x\(\ne\)-4,-5,-6,-7
\(\Leftrightarrow\)\(\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\dfrac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\dfrac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{\left(x+4\right).\left(x+5\right)}+\dfrac{1}{\left(x+5\right).\left(x+6\right)}+\dfrac{1}{\left(x+6\right).\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{3}{\left(x+4\right).\left(x+7\right)}=\dfrac{3}{54}\)
\(\Leftrightarrow\)(x+4).(x+7)=54
\(\Leftrightarrow\)x2+11x+28=54
\(\Leftrightarrow\)x2+11x-26=0
\(\Leftrightarrow\)x2+13x-2x-26=0
\(\Leftrightarrow\)x.(x+13)-2.(x+13)=0
\(\Leftrightarrow\)(x-2).(x+13)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)
Vậy tập nghiệm của pt trên là S={-13;2}
ĐKXĐ: \(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)
giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(pt\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
ĐKXĐ: x khác -4; -5 ; -6 ; -7
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Vậy.........
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)
a: \(=\dfrac{4xy+x^2-2xy+y^2}{2\left(x+y\right)\left(x-y\right)}\cdot\dfrac{2x}{x+y}-\dfrac{y}{x-y}\)
\(=\dfrac{x}{x-y}-\dfrac{y}{x-y}=1\)
b: \(=\dfrac{x^2+x-2-2x^2-2x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{3\left(x+1\right)}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{-x^2-x-2}{\left(x-1\right)}\cdot\dfrac{3}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{4x^2+x+7-3x^2-3x-6}{x\left(x-1\right)}=\dfrac{x^2-2x+1}{x\left(x-1\right)}=\dfrac{x-1}{x}\)
c: \(=\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}\)
\(=\dfrac{x+7-x-4}{\left(x+7\right)\left(x+4\right)}=\dfrac{3}{\left(x+4\right)\left(x+7\right)}\)
a) điều kiện xác định : \(x\ne0\)
ta có : \(A=\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{x^3-x^2+x+x^2-x+1-\left(x^3+x^2+x-x^2-x-1\right)}{x^4-x^3+x^2+x^3-x^2+x+x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\) \(\Leftrightarrow A=\dfrac{x^3-x^2+x+x^2-x+1-x^3-x^2-x+x^2+x+1}{x^4+x^2+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\) \(\Leftrightarrow A=\dfrac{2}{x^4+x^2+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\Leftrightarrow\left(x^4+x^2+1\right)A=2=\dfrac{3}{x}\) \(\Leftrightarrow2x=3\Leftrightarrow x=\dfrac{3}{2}\left(tmđk\right)\) vậy \(x=\dfrac{3}{2}\)b) điều kiện : \(x\notin\left\{-4;-5;-6;-7\right\}\)
\(B=\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow B=\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow B=\dfrac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow B=\dfrac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow B=\dfrac{3x^2+33x+90}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\) \(\Leftrightarrow B=\dfrac{3\left(x+5\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\) \(\Leftrightarrow B=\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\) \(\Leftrightarrow54=\left(x+4\right)\left(x+7\right)\)\(\Leftrightarrow54=x^2+11x+28\Leftrightarrow x^2+11x+28-54=0\)
\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2;x=-13\)