Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(\frac{4x-17}{2x^2+5}=0\)
\(\Leftrightarrow4x-17=0\)
\(\Leftrightarrow4x=17\)
\(\Leftrightarrow x=\frac{17}{4}\)
Vậy: \(x=\frac{17}{4}\)
b) ĐKXĐ: x≠-2
Ta có: \(\frac{\left(x^2-2x\right)-\left(3x+6\right)}{x+2}=0\)
\(\Leftrightarrow x^2-2x-3x-6=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Leftrightarrow x^2+x-6x-6=0\)
\(\Leftrightarrow x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)(tm)
Vậy: x∈{-1;6}
c) ĐKXĐ: x≠3
Ta có: \(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-2\end{matrix}\right.\)
Vậy: x=-2
d) ĐKXĐ: x≠-5
Ta có: \(\frac{2x-5}{x+5}=3\)
⇔\(\frac{2x-5}{x+5}-3=0\)
⇔\(\frac{2x-5}{x+5}-\frac{3\left(x+5\right)}{x+5}=0\)
\(\Leftrightarrow2x-5-3\left(x+5\right)=0\)
\(\Leftrightarrow2x-5-3x-15=0\)
\(\Leftrightarrow-x-20=0\)
\(\Leftrightarrow-\left(x+20\right)=0\)
\(\Leftrightarrow x=-20\)(tm)
Vậy: x=-20
$a)\dfrac{3{{x}^{2}}+7x-10}{x}=0$
ĐK: $x\ne 0$
$\begin{align}
& Pt\Leftrightarrow 3{{x}^{2}}-3x+10x-10=0 \\
& \Leftrightarrow 3x\left( x-1 \right)+10\left( x-1 \right)=0 \\
& \Leftrightarrow \left( x-1 \right)\left( 3x+10 \right)=0 \\
& \Leftrightarrow \left[ \begin{align}
& x-1=0 \\
& 3x+10=0 \\
\end{align} \right.\Leftrightarrow \left[ \begin{align}
& x=1 \\
& x=-\dfrac{10}{3} \\
\end{align} \right.\left( tm \right) \\
\end{align}$
$b)\dfrac{4x-17}{2{{x}^{2}}+1}=0$
ĐK: $x\in \mathbb{R}$
$Pt\Leftrightarrow 4x-17=0\Rightarrow x=\dfrac{17}{4}\left( tm \right)$
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
Bài 1:
a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)
\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)
\(\Leftrightarrow-5=0\)(vl)
Vậy: \(x\in\varnothing\)
b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
hay x=1
Vậy: x=1
c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)
\(\Leftrightarrow2x-72=0\)
\(\Leftrightarrow2\left(x-36\right)=0\)
mà 2>0
nên x-36=0
hay x=36
Vậy: x=36
d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)
\(\Leftrightarrow120x+36=56-64x\)
\(\Leftrightarrow120x+36-56+64x=0\)
\(\Leftrightarrow184x-20=0\)
\(\Leftrightarrow184x=20\)
hay \(x=\frac{5}{46}\)
Vậy: \(x=\frac{5}{46}\)
e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)
\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)
\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)
\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)
\(\Leftrightarrow-23x+29=0\)
\(\Leftrightarrow-23x=-29\)
hay \(x=\frac{29}{23}\)
Vậy: \(x=\frac{29}{23}\)
f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)
\(\Leftrightarrow2x+8-10x-50-25=0\)
\(\Leftrightarrow-8x-67=0\)
\(\Leftrightarrow-8x=67\)
hay \(x=\frac{-67}{8}\)
Vậy: \(x=\frac{-67}{8}\)
g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)
\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)
\(\Leftrightarrow10-5x-8x-8+12x-30=0\)
\(\Leftrightarrow-x-28=0\)
\(\Leftrightarrow-x=28\)
hay x=-28
Vậy: x=-28
h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)
\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)
\(\Leftrightarrow0x=0\)
Vậy: \(x\in R\)
Bài 2:
a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)
b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)
Từ (1) và (2) suy ra:
\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)
c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)
\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
hay x=-3
Vậy: Tập nghiệm S={-3}
d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)
\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)
\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)
\(\Leftrightarrow12-7x=0\)
\(\Leftrightarrow7x=12\)
hay \(x=\frac{12}{7}\)
Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)
e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x
\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)
\(\Leftrightarrow31x-1=0\)
\(\Leftrightarrow31x=1\)
hay \(x=\frac{1}{31}\)
Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)
a) |x - 2| = 3
<=> \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\) Vậy S = {-1; 5}
b) \(\left|x+1\right|=\left|2x+3\right|\)
<=> \(\orbr{\begin{cases}x+1=2x+3\\x+1=-2x-3\end{cases}}\)
<=> \(\orbr{\begin{cases}-x=2\\3x=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}\) Vậy S = {-2; -4/3}
c) \(\left|3x\right|=x+6\) (Đk: x \(\ge\)-6
<=> \(\orbr{\begin{cases}3x=x+6\\3x=-x-6\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=6\\4x=-6\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=-\frac{3}{2}\end{cases}}\)(tm)
Vậy S = {-3/2; 3}
d) \(\left|x-5\right|=13-2x\)(Đk : x \(\le\)13/2)
<=> \(\orbr{\begin{cases}x-5=13-2x\\x-5=2x-13\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=18\\-x=-8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=6\\x=8\left(ktm\right)\end{cases}}\)Vậy S = {6}
e) |5x - 1| = x - 12 (Đk: x \(\ge\)12)
<=> \(\orbr{\begin{cases}5x-1=x-12\\5x-1=12-x\end{cases}}\)
<=> \(\orbr{\begin{cases}4x=-11\\6x=13\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{11}{4}\\x=\frac{13}{6}\end{cases}}\left(ktm\right)\)
=> pt vô nghiệm
f) \(\left|-2x\right|=3x+4\)(Đk: x \(\ge\)-4/3)
<=> \(\orbr{\begin{cases}-2x=3x+4\\2x=3x+4\end{cases}}\)
<=> \(\orbr{\begin{cases}-5x=4\\-x=4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{4}{5}\\x=-4\left(ktm\right)\end{cases}}\) Vậy S = {-4/5}
\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-5\\x=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy .........
\(b,\left(x^2-4\right)+\left(x-2\right)\left(3-2x=0\right)\)
\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
Vậy ..................
\(c,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
\(d,x\left(2x-7\right)-4x+14=0\)
\(\Leftrightarrow2x^2-7x-4x+14=0\)
\(\Leftrightarrow2x^2-11x+14=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
Vậy ............
\(e,\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)
\(\Leftrightarrow3x^2-24x+21=0\)
\(\Leftrightarrow3\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy .....................
\(f,x^2-x-\left(3x-3\right)=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ..............
a) \(8-\left|3x-5\right|=-14\)
\(\Rightarrow\left|3x-5\right|=22\)
\(\Rightarrow TH1:3x-5=22\Rightarrow x=9\)
\(TH2:3x-5=-22\Rightarrow x=\frac{-17}{3}\)
Vậy......
mấy câu kia tương tự
hhhhh