Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x^2-4=8(x-2)
=> x^2 - 4 = 8.x - 16
=> x^2 = (8.x - 16) - 4
=> x^2 = 8.x - (16+4)
=> x^2 = 8.x - 20
A, \(x^2-4=8\left(x-2\right)\)=> \(\left(x-2\right).\left(x+2\right)=8\left(x-2\right)=>\left(x-2\right).\left(x+2\right)-8\left(x-2\right)=0\)
=>\(\left(x-2\right).\left(x-6\right)=0\)
=> x = 2 hoặc x =6
B. \(x^2-4x+4=9\left(x-2\right)\)=> \(\left(x-2\right)^2=9\left(x-2\right)=>\left(x-2\right)^2-9\left(x-2\right)=0\)
=>\(\left(x-2\right).\left(x-11\right)=0\)=> x =2 hoặc x =11
C. \(4x^2-12x+9=\left(5-x\right)^2=>\left(2x-3\right)^2=\left(5-x\right)^2\)
=>\(\left(2x-3\right)^2-\left(5-x\right)^2=>\left(3x-8\right).\left(x+2\right)=0\)
=> x = 3/8 hoặc x = - 2
\(x^4\cdot y^4=16\Leftrightarrow\left(xy\right)^4=16\Leftrightarrow xy=2\) (1)
có: \(\frac{x}{2}=\frac{y}{9}\Leftrightarrow x=\frac{2y}{9}\)
thay vào (1) đc:
\(x\cdot y=\frac{2y}{9}\cdot y=\frac{2y^2}{9}=2\)
\(\Rightarrow2y^2=18\Leftrightarrow y^2=9\Leftrightarrow y=3\)và \(y=-3\)
y = 3 <=> x = 2*3/9 = 2/3
y = -3 <=> x = 2*(-3)/9=-2/3
vậy x = 2/3, y = 3
x = -2/3, y = -3
Tìm x, biết:
\(\left(\frac{2}{3}\cdot x-\frac{1}{5}\right)^2=\frac{4}{9}\)
\(\Rightarrow\left(\frac{2}{3}\cdot x-\frac{1}{5}\right)^2=\left(\frac{2}{3}\right)^2=\left(-\frac{2}{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}\cdot x-\frac{1}{5}=\frac{2}{3}\\\frac{2}{3}\cdot x-\frac{1}{5}=-\frac{2}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}\cdot x=\frac{13}{15}\\\frac{2}{3}\cdot x=-\frac{7}{15}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{13}{10}\\x=-\frac{7}{10}\end{cases}}\)
\(\left(\frac{1}{4}\right)^3\cdot4^3=\left(\frac{1}{4}\cdot4\right)^3=1^3=1\)
\(\frac{1000^4}{250^4}=4^4=256\)
\(2^2\cdot9\cdot\frac{1}{54}\cdot\left(\frac{4}{9}\right)^2=2^2\cdot3^2\cdot2\cdot3^3\cdot\left(\frac{4}{9}\right)^2=\left[\left(2\cdot3\cdot\frac{4}{9}\right)^2\right]\cdot2\cdot3^3=\frac{64}{9}\cdot2\cdot27=384\)
2. a) 2x = 9 => x không thỏa mãn
b) x2 = 9 => x = \(\pm\)3
c) (x + 1)2 = 4 => (x + 1)2 = \(\pm\)22
=> \(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Bài 1 :
\(a,\left(\frac{1}{4}\right)^3.4^3\)
\(=\frac{1}{4^3}.4^3\)
\(=1\)
\(b,\frac{1000^4}{250^4}=\frac{\left(250.4\right)^4}{250^4}=\frac{250^4.4^4}{250^4}=4^4=256\)
\(d,2^2.9.\frac{1}{54}.\left(\frac{4}{9}\right)^2\)
\(=36.\frac{1}{54}.\frac{4^2}{9^2}\)
\(=\frac{18.2.16}{18.3.81}\)
\(=\frac{32}{243}\)
Bài 2 :
\(a,2^x=9\)
\(\Rightarrow\)x không thỏa mãn
\(b,x^2=9\)
\(\Rightarrow x^2=3^2\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(c,\left(x+1\right)^2=4\)
\(\Rightarrow\left(x+1\right)^2=2^2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Học tốt
a)\(\frac{9}{4}\cdot\left|x\right|-\frac{5}{2}=\frac{8}{3}\)\(\Rightarrow\frac{9}{4}\cdot\left|x\right|=\frac{8}{3}+\frac{5}{2}\Rightarrow\frac{9}{4}\cdot\left|x\right|=\frac{31}{6}\)
\(\Rightarrow\left|x\right|=\frac{31}{6}:\frac{9}{4}\Rightarrow\left|x\right|=\frac{31}{6}\cdot\frac{4}{9}\Rightarrow\left|x\right|=\frac{62}{27}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{62}{27}\\x=-\frac{62}{27}\end{cases}}\)
b)\(\frac{1}{2}\cdot\left|x\right|+\frac{3}{4}=\frac{2}{3}\Rightarrow\frac{1}{2}\cdot\left|x\right|=\frac{2}{3}-\frac{3}{4}\Rightarrow\frac{1}{2}\cdot\left|x\right|=-\frac{1}{12}\)
\(\Rightarrow\left|x\right|=-\frac{1}{12}:\frac{1}{2}\Rightarrow\left|x\right|=-\frac{1}{12}\cdot2\Rightarrow\left|x\right|=-\frac{1}{6}\)
Ta có\(\left|x\right|\ge0\)mà \(-\frac{1}{6}\le0\)
Do đó ko có giá trị của x thỏa mãn
\(\dfrac{9}{x-2}=\dfrac{x-2}{4}\left(ĐK:x\ne2\right)\\ =>\left(x-2\right)\cdot\left(x-2\right)=9\cdot4\\ =>\left(x-2\right)^2=36\\ =>\left(x-2\right)^2=6^2\\ TH1:x-2=6\\ =>x=6+2\\ =>x=8\\ TH2:x-2=-6\\ =>x=-6+2\\ =>x=-4\)