Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 4\(^{x+1}\) + 4\(^0\) = 65
\(\Rightarrow\)4\(^{x+1}\) = 65 - 1
\(\Rightarrow\)x + 1 = 64 : 4
\(\Rightarrow\)x + 1 = 16
\(\Rightarrow\)x = 15
2) 10 + 2x = 16\(^{^2}\): 4\(^3\)
\(\Rightarrow\)10 + 2x = 4
\(\Rightarrow\)2x = 4 - 10
\(\Rightarrow\)2x = -6
\(\Rightarrow\)x = -3
a)5x+1=125
=>5x+1=53
=>x+1=3
=>x=2
vậy x=2
b)42x+1=64
=>42x+1=43
=>2x+1=3
=>x=1
vậy x =1
e)=>43x+2017=42020-3
=>3x+2017=2017
=>x=0
vậy x=0
f)=>2x+2x x 23=144
=>2x x (1+23)=144
=>2x x 9=144
=>2x=16
=>2x=24
=>x=4
vậy x=4
k,(x + 1) + (x + 2) + (x + 3) + .... + (x + 100) = 5750
=> 100x + (1 + 2 + 3 + ... + 100) = 5750
=> 100x + 5050 = 5750
=> 100x = 5750 - 5050
=> 100x = 700
=> x = 700 : 100
=> x = 7
i,92.4 - 27 = (x + 350) : x + 315
=> 1 + 350 : x + 315 = 341
=> 350 : x = 341 - 316 = 25
-> x = 350: 25 = 14
\(1.\left(x-1\right)^2=4=\left(-2\right)^2=2^2\)
\(TH1:x-1=2\Rightarrow x=3\)
\(TH2:x-1=-2\Rightarrow x=-1\)
Vậy:...
\(2.\left(1+x\right)^2=9=\left(-3\right)^2=3^2\)
\(TH1:1+x=3\Rightarrow x=2\)
\(TH2:1+x=-3\Rightarrow x=-4\)
Vậy:....
\(3,\left(x+2019\right)^4=1\Rightarrow\left(x+2019\right)^4=1^4\)
\(\Rightarrow\orbr{\begin{cases}x+2019=1\\x+2019=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-2018\\x=-2020\end{cases}}}\)
\(4,\left(x+10\right)^3=1\Rightarrow\left(x+10\right)^3=1^3\)
\(\Rightarrow x+10=1\)
\(\Rightarrow x=-9\)
a) Có : \(6^{x+2}-6^{x+1}=1080\)
=> \(6^{x+1}.\left(6-1\right)=6^{x+1}.5=1080\)
=> \(6^{x+1}=1080:5=216\)
=> \(6^{x+1}=6^3=216\)
=> x+1 = 3
=> x = 3 - 1 = 2
Vậy x = 2
Ủng hộ mik nhá
a) ( 3x - 4 ) . ( x - 1 ) 3 = 0
\(\Rightarrow\orbr{\begin{cases}3x-4=0\\\left(x-1\right)^3=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=4\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=1\end{cases}}\)
b) x17 = x
\(\Rightarrow\)x17 - x = 0
\(\Rightarrow\)x . ( x16 - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{16}-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^{16}=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) 22x - 1 : 4 = 83
22x - 1 : 22 = 29
22x - 1 = 29 . 22
22x - 1 = 211
\(\Rightarrow\)2x - 1 = 11
\(\Rightarrow\)2x = 12
\(\Rightarrow\)x = 6
d) ( x + 2 ) 5 = 210
( x + 2 ) 5 = 45
\(\Rightarrow\)x + 2 = 4
\(\Rightarrow\)x = 4 - 2 = 2
e) ( x - 5 ) 4 = ( x - 5 ) 6
( x - 5 ) 4 - ( x - 5 ) 6 = 0
( x - 5 ) 4 . [ 1 - ( x - 5 ) 2 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x-5=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
f ) số số hạng của dãy trên là :
( x - 1 ) : 1 + 1 = x ( số )
tổng của dãy trên là :
( x + 1 ) . x : 2 = 78
( x + 1 ) . x = 78 . 2 = 156
Phân tích : 156 = 22 . 3 . 13 = ( 22 . 3 ) . 13 = 12 . 13
\(\Rightarrow\)x = 12
g) ( x + 1 ) 2 = ( x + 1 ) 0
( x + 1 ) 2 = 1
\(\Rightarrow\)x + 1 = 1
\(\Rightarrow\)x = 1 - 1 = 0
h) ( 2 + x ) + ( 4 + x ) + ( 6 + x ) + ... + ( 52 + x ) = 780
( 2 + 4 + 6 + ... + 52 ) + ( x + x + x + ... + x ) = 780
2 . ( 1 + 2 + 3 + ... + 26 ) + 26x = 780
2 . 351 + 26x = 780
702 + 26x = 780
26x = 780 - 702
26x = 78
x = 78 : 26
x = 3
a) (3x - 4) . (x - 1)3 = 0
+) (3x - 4) =0
3x =0+4
3x =4
x =3:4
x =0,75
a, \(\left(2x+7\right)^4=10^{11}:10^7\)
\(\Rightarrow\left(2x+7\right)^4=10^4\)
\(\Rightarrow2x+7=10\)
\(\Rightarrow2x=10-7\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\) hay \(x=1,5\)
b, \(5^{x-1}.7^{x-1}=25.49\)
\(\Rightarrow\)\(5^{x-1}.7^{x-1}=5^2.7^2\)
\(\Rightarrow\left\{{}\begin{matrix}5^{x-1}=5^2\\7^{x-1}=7^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=2\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)
c, \(\left(x-5\right)^{2018}=9.\left(x-5\right)^{2016}\)
\(\Rightarrow\dfrac{\left(x-5\right)^{2018}}{\left(x-5\right)^{2016}}=9.\dfrac{\left(x-5\right)^{2016}}{\left(x-5\right)^{2016}}\)
\(\Rightarrow\left(x-5\right)^2=9\)
\(\Leftrightarrow\left(x-5\right)^2=3^2\)
\(\Rightarrow x-5=3\)
\(\Rightarrow x=3+5\)
\(\Rightarrow x=8\)
b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí
\(7\cdot4^{x-1}+4^{x+1}=4^x\cdot7\cdot\dfrac{1}{4}+4^x\cdot4\)
\(=4^x\left(7,25+4\right)=11,25\cdot4^x\)