K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

\(\sqrt{7-x}=a\)

\(2+\sqrt{x}=b\)

a2 + 2b - 4 = ab

=>(a-2)(a+2 -b) =0

giải tiếp nhé.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

1. ĐKXĐ: $x\geq \frac{-3}{5}$

PT $\Leftrightarrow 5x+3=3-\sqrt{2}$

$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

2. ĐKXĐ: $x\geq \sqrt{7}$ 

PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$

$\Leftrightarrow x-49=4$

$\Leftrightarrow x=53$ (thỏa mãn)

 

11 tháng 9 2018

Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt[3]{x+7}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a^3+b^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\\left(a+b\right)\left(a^2-ab+b^2\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a+b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\) 

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

8 tháng 10 2023

a) đkxđ \(x\ge1\)

pt đã cho \(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}+3}+\dfrac{x-5}{\sqrt{x-1}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+3}=0\end{matrix}\right.\)

 Hiển nhiên pt thứ 2 vô nghiệm vì \(VT>0\) với mọi \(x\ge1\). Do đó pt đã cho có nghiệm duy nhất là \(x=5\)

b) đkxđ: \(x\ge-3\)

 Để ý rằng \(x^2+2x+7=\left(x^2+1\right)+\left(2x+6\right)=\left(x^2+1\right)+2\left(x+3\right)\) nên nếu ta đặt \(\sqrt{x^2+1}=u\left(u\ge1\right)\) và \(\sqrt{x+3}=v\left(v\ge0\right)\) thì pt đã chot rở thành:

 \(u^2+2v^2=3uv\)

 \(\Leftrightarrow\left(u-v\right)\left(u-2v\right)=0\)

 \(\Leftrightarrow\left[{}\begin{matrix}u=v\\u=2v\end{matrix}\right.\)

Nếu \(u=v\) thì \(\sqrt{x^2+1}=\sqrt{x+3}\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=x+3\end{matrix}\right.\) 

Mà \(x^2+1=x+3\)  \(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (nhận)

 Nếu \(u=2v\) thì \(\sqrt{x^2+1}=2\sqrt{x+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=4x+12\end{matrix}\right.\)

mà \(x^2+1=4x+12\)\(\Leftrightarrow x^2-4x-11=0\)

\(\Leftrightarrow x=2\pm\sqrt{15}\) (nhận)

Vậy pt đã cho có tập nghiệm \(S=\left\{2;-1;2\pm\sqrt{15}\right\}\)

 

8 tháng 10 2023

a) \(\sqrt{2x-1}+\sqrt{x-1}=5\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{x-1}\right)^2=5^2\)

\(\Leftrightarrow2x-1+x-1+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)

\(\Leftrightarrow3x-2+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-1\right)}=\dfrac{27-3x}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{27-3x}{2}\ge0\\\left(2x-1\right)\left(x-1\right)=\left(\dfrac{27-3x}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}27-3x\ge0\\2x^2-2x-x+1=\dfrac{729-162x+9x^2}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x\le27\\8x^2-12x+4=9x^2-162x+729\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x^2-150x+725=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x-5=0\\x-145=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=145\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=5\)