Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)
=>x(2x+10-x+2)=0
=>x(x+12)=0
=>x=0 hoặc x=-12
b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)
=>(2x-5)(3x+12)=0
=>x=5/2 hoặc x=-4
c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)
=>(x-3)(3x+3)=0
=>x=3 hoặc x=-1
d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)
=>(x+2)(-5x+3)=0
=>x=-2 hoặc x=3/5
\(a,\left(x-2\right)x=2x\left(x+5\right)\)
\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)
\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)
\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)
b: =>(x-5)2+6(x-5)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
c: \(\Leftrightarrow x^2-x+2=2\)
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
3.(2x2+5) > 6x.(x+5)
<=>6x2+15 > 6x2+30x
<=>15 > 30x (cùng bớt đi 6x2)
<=>30x < 15
<=>x < \(\frac{15}{30}=\frac{1}{2}\)
Vậy x < 1/2 thì thỏa mãn BPT
3(2x2+5) \(\ge\) 6x(x+5)
\(\Leftrightarrow\) 6x2 +15 \(\ge\) 6x2 + 30x
\(\Leftrightarrow\) 15 \(\ge\) 30x \(\Leftrightarrow\) x \(\le\)\(\frac{1}{2}\)
a/ x.(x + 1)(x2 + x + 1) = 42
=> (x2 + x)(x2 + x + 1) = 42
Đặt a = x2 + x ta đc:
a.(a + 1) = 42
=> a2 + a - 42 = 0
=> (a - 6)(a + 7) = 0
=> a = 6 hoặc a = -7
Với a = 6 => x2 + x = 6 => x2 + x - 6 = 0 => (x - 2)(x + 3) = 0 => x = 2 hoặc x = -3
Với a = -7 => x2 + x = -7 => x2 + x + 7 = 0 , mà x2 + x + 7 > 0 => pt vô nghiệm
Vậy x = 2 , x = -3
b/ (3x - 1)2 - 5(2x + 1)2 + (6x - 3)(2x + 1) = (x - 1)2
=> 9x2 - 6x + 1 - 5.(4x2 + 4x + 1) + (12x2 - 3) = x2 - 2x + 1
=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x - 1 = 0
=> - 24x - 8 = 0
=> -24x = 8
=> x = -1/3
Vậy x = -1/3
1) ĐK: \(x\ge-1\)
TH1: \(x^2-3x+1=-x-1\)
\(\Leftrightarrow x^2-2x+2=0\Leftrightarrow\left(x-1\right)^2+1=0\) vô lý
TH2: \(x^2-3x+1=x+1\)
\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy ...
1) \(\left|x^2-3x+1\right|=x+1\)(1)
khi \(x\ge-1\), phương trình (1) có dạng:
\(\orbr{\begin{cases}x^2-3x+1=x+1\\x^2-3x+1=-x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2-4x=0\\x^2-2x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x\left(x-4\right)=0\\\left(x-1\right)^2+1=0\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=4\end{cases}}\\\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì \(\left(x-1\right)^2+1>0\)(vô nghiệm) )
vậy tập nghiệm của phương trình là: S={0;4}
\(\frac{6x}{x-2}+\frac{6x}{\left(x-2\right)\left(x-5\right)}=\frac{2x}{x-5}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) 5)
\(\Leftrightarrow\) \(\frac{6x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}+\frac{6x}{\left(x-2\right)\left(x-5\right)}=\frac{2x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow\) 6x(x - 5) + 6x = 2x(x - 2)
\(\Leftrightarrow\) 6x2 - 30x + 6x = 2x2 - 4x
\(\Leftrightarrow\) 6x2 - 2x2 = -4x + 30x - 6x
\(\Leftrightarrow\) 4x2 = 20x
\(\Leftrightarrow\) 4x = 20
\(\Leftrightarrow\) x = 5 (KTMĐK)
Vậy S = \(\varnothing\)
Chúc bn học tốt