K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

ĐK: \(-\dfrac{1}{4}\le x\le3\)

\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

14 tháng 11 2022

GIẢI THIK ĐC HOK Ạ

 

NV
9 tháng 9 2020

ĐKXĐ: ...

\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)

Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)

\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)

Pt trở thành:

\(3t=t^2-10\)

\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)

Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
11 tháng 12 2018

Ta có

\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)

Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)

\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

18 tháng 11 2019

\(3x-2\sqrt{4x-3}=3\) (ĐK: \(x\ge1\))

\(\Leftrightarrow2\sqrt{4x-3}=3x-3\)

\(\Leftrightarrow\left(2\sqrt{4-3}\right)^2=\left(3x-3\right)^2\)

\(\Leftrightarrow4\cdot\left(4x-3\right)=9x^2-18+9\)

\(\Leftrightarrow16x-12-9x^2+18x-9=0\)

\(\Leftrightarrow34x-9x^2-21=0\)

\(\Leftrightarrow27x+7x-9x^2-21=0\)

\(\Leftrightarrow\left(27x-9x^2\right)-\left(21-7x\right)=0\)

\(\Leftrightarrow9x\left(3-x\right)-7\left(3-x\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(9x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\9x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(n\right)\\x=\frac{7}{9}\left(l\right)\end{matrix}\right.\)

Vậy: x=3

15 tháng 9 2020

Phương pháp giải như sau :  

Trước hết phải có ĐKXĐ là  \(x>1\)

Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\)        (1)

Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có

\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên

(1)   \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)

Kết luận:...        (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)

10 tháng 1 2015

Giải

Đặt A = \(\sqrt{x^2+11x-6}-3\sqrt{x+6}\)

      B = \(\sqrt{x^2+3x-2}-3\sqrt{x+2}\)

Theo bài ra ta có A + B = 4  (1)

Mặt khác ta có A2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)(2)

Từ (1) ta có A = 4 - B thế vào (2) ta có 16 - 8B + B2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)

Hay B + x + 2 - 3\(\sqrt{2x-1}\)= 0\(\Rightarrow\)\(\sqrt{x^2+3x-2}-3\sqrt{x+2}+x+2\) - \(3\sqrt{2x-1}\)\(\Rightarrow\)\(\sqrt{\left(x+2\right)\left(2x-1\right)}\) - \(3\sqrt{2x-1}+\sqrt{x+2}\left(\sqrt{x+2}-3\right)\)= 0

Hay \(\sqrt{2x-1}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}\left(\sqrt{x+2}-3\right)=0\)

\(\Rightarrow\left(\sqrt{x+2}-3\right)\left(\sqrt{2x-1}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Leftrightarrow x=7\)

Thử lại x = 7 thỏa mã bài ra. Vậy nghiệm của phương trình la x = 7

10 tháng 1 2015

câu trả lời hay đấy ,còn cách giải khác không ,giải cho mình nốt các bài còn lại đi

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Lời giải:

ĐK: $x\geq \frac{-1}{3}$. Ta có:

\(4x^2+5+\sqrt{3x+1}=13x\)

\(\Leftrightarrow (4x^2-11x+3)-(2x-2-\sqrt{3x+1})=0(*)\)

TH1: Nếu \(2x-2+\sqrt{3x+1}=0(1)\)

\(\Rightarrow \sqrt{3x+1}=2-2x\Rightarrow \left\{\begin{matrix} x\leq 1\\ 3x+1=(2-2x)^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 1\\ 4x^2-11x+3=0\end{matrix}\right.\Rightarrow x=\frac{11-\sqrt{73}}{8}\) . Thử lại vào PT ban đầu không thấy đúng (loại)

TH2: Nếu $2x-2+\sqrt{3x+1}\neq 0$ (tức là \(x\neq \frac{11-\sqrt{73}}{8}\))

\((*)\Leftrightarrow (4x^2-11x+3)-\frac{(2x-2)^2-(3x+1)}{2x-2+\sqrt{3x+1}}=0\)

\(\Leftrightarrow (4x^2-11x+3)-\frac{4x^2-11x+3}{2x-2+\sqrt{3x+1}}=0\)

\(\Leftrightarrow \frac{(4x^2-11x+3)(2x-3+\sqrt{3x+1})}{2x-2+\sqrt{3x+1}}=0\)

\(\Leftrightarrow \left[\begin{matrix} 4x^2-11x+3=0\\ 2x-3+\sqrt{3x+1}=0\end{matrix}\right.\)

Nếu $4x^2-11x+3=0\Rightarrow x=\frac{11+\sqrt{73}}{8}$ (loại TH $x=\frac{11-\sqrt{73}}{8}$

Nếu \(2x-3+\sqrt{3x+1}=0\Rightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ (2x-3)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ 4x^2-15x+8=0\end{matrix}\right.\Rightarrow x=\frac{15-\sqrt{97}}{8}\)

Thử lại thấy thỏa mãn. Vậy.........

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

ĐK: $x\geq \frac{-1}{3}$. Ta có:

\(4x^2+5+\sqrt{3x+1}=13x\)

\(\Leftrightarrow (4x^2-11x+3)-(2x-2-\sqrt{3x+1})=0(*)\)

TH1: Nếu \(2x-2+\sqrt{3x+1}=0(1)\)

\(\Rightarrow \sqrt{3x+1}=2-2x\Rightarrow \left\{\begin{matrix} x\leq 1\\ 3x+1=(2-2x)^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 1\\ 4x^2-11x+3=0\end{matrix}\right.\Rightarrow x=\frac{11-\sqrt{73}}{8}\) . Thử lại vào PT ban đầu không thấy đúng (loại)

TH2: Nếu $2x-2+\sqrt{3x+1}\neq 0$ (tức là \(x\neq \frac{11-\sqrt{73}}{8}\))

\((*)\Leftrightarrow (4x^2-11x+3)-\frac{(2x-2)^2-(3x+1)}{2x-2+\sqrt{3x+1}}=0\)

\(\Leftrightarrow (4x^2-11x+3)-\frac{4x^2-11x+3}{2x-2+\sqrt{3x+1}}=0\)

\(\Leftrightarrow \frac{(4x^2-11x+3)(2x-3+\sqrt{3x+1})}{2x-2+\sqrt{3x+1}}=0\)

\(\Leftrightarrow \left[\begin{matrix} 4x^2-11x+3=0\\ 2x-3+\sqrt{3x+1}=0\end{matrix}\right.\)

Nếu $4x^2-11x+3=0\Rightarrow x=\frac{11+\sqrt{73}}{8}$ (loại TH $x=\frac{11-\sqrt{73}}{8}$

Nếu \(2x-3+\sqrt{3x+1}=0\Rightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ (2x-3)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ 4x^2-15x+8=0\end{matrix}\right.\Rightarrow x=\frac{15-\sqrt{97}}{8}\)

Thử lại thấy thỏa mãn. Vậy.........