Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow64x^3=\left(x-2+3x+2\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\right)\)\(\Leftrightarrow16x^2=\left(x-2\right)^2-\left(x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(\Leftrightarrow x^2-4x+4-3x^2-2x+6x+4+9x^2+12x+4-16x^2=0\)
\(\Leftrightarrow-9x^2+12x+12\Leftrightarrow3x^2-4x-4=0\).Dùng Casio bấm nghiệm nhá! mk mất máy tính rồi!!!!
\(x^6-6x^4-64x^3+12x^2-8=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left(x^4+4x^3+12x^2-8x+4\right)=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^4+4x^3+4x^2\right)+\left(8x^2-8x+\frac{8}{4}\right)+2\right]=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^2+2x\right)^2+8\left(x-\frac{1}{2}\right)^2+2\right]=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow x=2\pm\sqrt{6}\)
\(\text{Viết lại đề}:\left(x^2-3x+2\right)^3=x^6-\left(3x-2\right)^3\)
\(\Leftrightarrow\left(x^2-3x+2\right)^3+\left(3x-2\right)^3+\left(-x^2\right)^3=0\)
\(\text{CM hàng đẳng thức mở rộng: }\)
\(\text{Đặt }x^2-3x+2=x,3x-2=y;-x^2=z\text{ ta có:}\)
\(\text{ }x^2-3x+2+3x-2-x^2=0\text{ }\)
\(\text{hay }x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=-z^3\)
\(\text{Ta lại có: }x^3+y^3+z^3=x^3+y^3-\left(x+y\right)^3\)
\(=x^3+y^3-x^3-y^3-3xy\left(x+y\right)\)
\(=-3xy\left(-z\right)=3xyz\)
\(\text{Nên }\)\(\left(x^2-3x+2\right)^3+\left(3x-2\right)^3+\left(-x^2\right)^3=3\left(x^2-3x+2\right)\left(3x-2\right)\left(-x^2\right)\)
+ \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
+\(3x-2=0\Leftrightarrow x=\frac{2}{3}\)
+\(-x^2=0\Leftrightarrow x=0\)
\(\text{Vậy pt có 4 No là:.... ( bn có thể nhân hết ra rồi giải pt trình nhưng mk thấy cách này nhanh hơn)}\)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Đặt \(\hept{\begin{cases}x^2+3x-4=a\\3x^2+7x+4=b\end{cases}\Rightarrow4x^2+10x=a+b}\)
\(\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3=\left(4x^2+10x\right)^3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow3ab\left(a+b\right)=0\)
Nếu \(a=0\Rightarrow x^2+3x-4=0\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Nếu \(b=0\Rightarrow3x^2+7x+4=0\Rightarrow3x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(3x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}\)
Nếu \(a+b=0\Rightarrow4x^2+10x=0\Rightarrow2x\left(2x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)