K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2014

Xét x=0 ==> loại

Xét x\(\ne\)0,ta chia cả 2 vế cho x2 thu được: 

4(x2+17x+60)(x2+16x+60)=3x2

4(x+\(\frac{60}{x}\)+17)(x+\(\frac{60}{x}\)+16)=3

Đặt x+\(\frac{60}{x}\)+16=t,ta được

4(t+1).t=3 <=> 4t2+4t-3=0 <=> t=\(\frac{1}{2}\)hoặc t=\(\frac{-3}{2}\)

Với t=1/2,ta có x+\(\frac{60}{x}\)+16=1/2 <=> x=-15/2 hoặc x=-8

Với t=-3/2,ta có x+\(\frac{60}{x}\)+16=-3/2 <=> ... bạn tự giải nốt nhé.

29 tháng 8 2017

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x.(x+1). ( x+ 4). (x+ 5) = 12

⇔ [ x. (x + 5)]. [(x+1). (x+ 4)] = 12

⇔ x 2 + 5 x ⋅ x 2 + 4 x + x + 4 − 12 = 0 ⇔ x 2 + 5 x ⋅ x 2 + 5 x + 4 − 12 = 0 ( * )

Đặt  t =   x 2   +   5 x   +   2

= >   x 2   +   5 x   =   t   –   2   v à   x 2   +   5 x +   4   =   t +   2

Khi đó phương trình (*) trở thành:

( t – 2). (t+ 2) - 12 = 0

⇔ t 2 − 4 − 12 = 0 ⇔ t 2 − 16 = 0 ⇔ t 2 = 16 ⇔ t = ± 4

+ Với t = 4 ta có:  x 2   +   5 x   +   2   =   4

⇔   x 2   + 5 x   –   2   =   0   ( * * )

Có a= 1, b = 5, c = - 2 và  ∆   =   5 2   –   4 . 1 . ( - 2 )   =   33   >   0

Nên (**) có 2 nghiệm phân biệt là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Với t = - 4 ta có:  x 2   +   5 x   +   2 =   -   4

⇔   x 2   +   5 x   +   6   =   0   ( * * * )

Có a= 1, b = 5, c= 6 và  ∆   =   5 2   –   4 . 1 . 6   =   1   >   0

Phương trình (***) có 2 nghiệm là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

24 tháng 7 2018

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x.(x+1). ( x+ 4). (x+ 5) = 12

⇔ [ x. (x + 5)]. [(x+1). (x+ 4)] = 12

⇔ x 2 + 5 x ⋅ x 2 + 4 x + x + 4 − 12 = 0 ⇔ x 2 + 5 x ⋅ x 2 + 5 x + 4 − 12 = 0 ( * )

Đặt  t = x 2 + 5 x + 2

= >   x 2   +   5 x   =   t   –   2   v à   x 2   +   5 x +   4   =   t +   2

Khi đó phương trình (*) trở thành:

( t – 2). (t+ 2) - 12 = 0

⇔ t 2 - 4 - 12 = 0 ⇔ t 2 - 16 = 0 ⇔ t 2 = 16 ⇔ t = ± 4

+ Với t = 4 ta có:  x 2   +   5 x   +   2   =   4

⇔ x2 +5x – 2 = 0 (**)

Có a= 1, b = 5, c = - 2 và  ∆   =   5 2   –   4 . 1 . ( - 2 )   =   33   >   0

Nên (**) có 2 nghiệm phân biệt là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Với t = - 4 ta có:  x 2   +   5 x   +   2 =   -   4

⇔   x 2   +   5 x   +   6   =   0   ( * * * )

Có a= 1, b = 5, c= 6 và    ∆   =   5 2   –   4 . 1 . 6   =   1   >   0

Phương trình (***) có 2 nghiệm là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

14 tháng 5 2021

`1)(x+2)(x+3)(x-7)(x-8)=144`
`<=>[(x+2)(x-7)][(x+3)(x-8)]=144`
`<=>(x^2-5x-14)(x^2-5x-24)=144`
`<=>(x^2-5x-19)^2-25=144`
`<=>(x^2-5x-19)^2-169=0`
`<=>(x^2-5x-6)(x^2-5x-32)=0`
`+)x^2-5x-6=0`
`<=>` $\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.$
`+)x^2-5x-32=0`
`<=>` $\left[ \begin{array}{l}x=\dfrac{5+3\sqrt{17}}{2}\\x=\dfrac{5-3\sqrt{17}}{2}\end{array} \right.$
Vậy `S={-1,6,\frac{5+3\sqrt{17}}{2},\frac{5-3\sqrt{17}}{2}}`

1: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)=144\)

\(\Leftrightarrow\left(x^2-7x+2x-14\right)\left(x^2-8x+3x-24\right)=144\)

\(\Leftrightarrow\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+336-144=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+192=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2-6\left(x^2-5x\right)-32\left(x^2-5x\right)+192=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x-6\right)-32\left(x^2-5x-6\right)=0\)

\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x-32\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+1\right)\left(x^2-5x-32\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+1=0\\x^2-5x-32=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\\x=\dfrac{5-3\sqrt{17}}{2}\\x=\dfrac{5+3\sqrt{17}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{6;-1;\dfrac{5-3\sqrt{17}}{2};\dfrac{5+3\sqrt{17}}{2}\right\}\)

6 tháng 1 2017

\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

\(\Leftrightarrow\left(\sqrt{x^2+12}+\left(x-6\right)\right)-\left(\left(x-5\right)+\sqrt{x^2+5}\right)+\left(-3x+6\right)=0\)

\(\Leftrightarrow\frac{12\left(x-2\right)}{\sqrt{x^2+12}+6-x}+\frac{10\left(x-2\right)}{\sqrt{x^2+5}+5-x}+-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{12}{\sqrt{x^2+12}+6-x}+\frac{10}{\sqrt{x^2+5}+5-x}-3\right)=0\)

\(\Leftrightarrow x=2\)

5 tháng 1 2017

Dùng lượng liên hiệp mà giải đi bạn.

Giải được nghiệm x = 2 đó