Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
ĐKXĐ: bạn tự tìm
a/ Có vẻ bạn ghi nhầm đề, nhưng nói chung vẫn giải được, nghiệm xấu
\(\Leftrightarrow2\sqrt{x}+\frac{1}{2}\sqrt{x}-\frac{3}{4}\sqrt{5x}=5\)
\(\Leftrightarrow\sqrt{x}\left(\frac{5}{2}-\frac{3\sqrt{5}}{4}\right)=5\)
\(\Rightarrow\sqrt{x}=\frac{40+12\sqrt{5}}{11}\Rightarrow x=\left(\frac{40+12\sqrt{5}}{11}\right)^2\)
b/ \(\sqrt{3-x}-3\sqrt{3-x}+5\sqrt{3-x}=6\)
\(\Leftrightarrow3\sqrt{3-x}=6\)
\(\Leftrightarrow\sqrt{3-x}=2\Rightarrow3-x=4\Rightarrow x=-1\)
c/ \(7\left(5\sqrt{x}-2\right)=2\left(8\sqrt{x}+\frac{5}{2}\right)\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow19\sqrt{x}=19\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
d/ \(\sqrt{3x^2+12x+4}=4\)
\(\Leftrightarrow3x^2+12x+4=16\)
\(\Leftrightarrow3x^2+12x-12=0\)
\(\Rightarrow x=-2\pm2\sqrt{2}\)
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)