K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

câu a và b e thay m=0 và m=3 vào pt.

câu c e thay x=-2 vào pt và tìm m

20 tháng 2 2018

a,với m=0 thì

4x^2 - 25 +0^2 + 4*0*x=0

4x^2-25=0

(2x-5)(2x+5)=0

2x-5=0 hoặc 2x+5=0

x=5/2 hoặc x=-5/2

b,với m=-3 thi

4x^2-25+9-12x=0

4x^2-12x-16=0

(2x-4)^2-36=0

(2x-4-6)(2x-4+6)=0

(2x-10)(2x+2)=0

2x-10=0 hoặc 2x+2=0

x=5 hoặc x=-1

c,với x=-2 thì

16-25+m^2-8m=0-4-5

m^2-8m+16-25=0

(m-4)^2-5^2=0

(m-4-5)(m-4+5)=0

(m-9)(m+1)=0

m-9=0 hoặc m+1=0

m=9 hoặc m=-1

a: Thay x=-2 vào pt,ta được:

-8+4a+8-4=0

=>4a-4=0

hay a=1

b: Pt sẽ là \(x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

=>(x+1)(x-2)(x+2)=0

hay \(x\in\left\{-1;2;-2\right\}\)

Bài 2: 

a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)

\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)

Trường hợp 1: a=0

=>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

Trường hợp 2: a<>0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)

b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)

Trường hợp 1: a=0

Phương trình sẽ là 2x+5=0

hay x=-5/2

Trường hợp 2: a<>0

Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

21 tháng 1 2022

a) Để phương trình trên là phương trình bậc nhất thì: m≠\(\dfrac{3}{8}\)

c) Để phương trình vô nghiệm thì: m=0

d) Để phương trình vô số nghiệm thì m=\(\dfrac{3}{8}\)

21 tháng 1 2022

a/ \(\left(2m-3\right)x+\left(x-3\right)4m+2mx=0\)

\(\Leftrightarrow\left(8m-3\right)x-12m=0\)

Để phương trình là hàm số bậc 1 :

\(8m-3\ne0\Leftrightarrow m\ne\dfrac{3}{8}\)

b/ Phương trình vô nghiệm :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m\ne0\end{matrix}\right.\)

c/ Phương trình vô số nghiệm khi :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m=0\end{matrix}\right.\)

 

22 tháng 2 2020

Các bạn giúp mk với ạ

15 tháng 5 2020

Nooooooooooo giúp