Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3
Xét 3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3
Thay vào (2) không thỏa mãn
Xét 3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3
(1) ⇔ y ( x – y ) = y − x 3 y − 1 + x + 2 y − 1
Với x = y, thay vào (2) ta được:
x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2 ( x 2 – 2 x + 2 ) = 0 ⇔ x = 1
Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)
Nên x. y = 1
Đáp án:B
+4xy vào mỗi vế
=> nhóm VP = (xy+2)^2; VT = (2x+y)^2 + 3x + 3y
=> VT là SCP
kẹp:
(2x+y)^2< (2x+y)^2 + 3x + 3y<(2x+y+2)^2(do x,y nguyên dương)
=> (2x+y)^2 + 3x + 3y = (2x+y+1)^2
=> y = x+1
thay vào
x2y2+4=4x2+y2+3x+3y
r giải pt có x,ytự làm nốt
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
- Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:
\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
- Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:
\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)
a: Ta có: \(\left\{{}\begin{matrix}3x+2y=14\\5x+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+10y=70\\15x+9y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=67\\3x=14-2y=14-2\cdot67=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\y=67\end{matrix}\right.\)
b: Ta có: \(\left\{{}\begin{matrix}-x+2y-6=0\\5x-3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x+10y=30\\5x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\2y-x=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)
\(3x^2+2xy-3y^2=30=5\cdot6=5x^2-5xy\\ \Leftrightarrow-2x^2+7xy-3y^2=0\)
Đặt x=t*y
Vậy pt tương đương với\(\Rightarrow\orbr{\begin{cases}y=0\\\orbr{\begin{cases}t=3\\t=\frac{1}{2}\end{cases}}\end{cases}}\)sau sẽ ra 3 trường hợp :
y=0
t=3 hoặc t=1/2
TH1: y=0 ta dễ tìm được x= \(\pm\sqrt{6}\)\(\Leftrightarrow-2t^2y^2+7ty^2-3y^2=0\\ \Leftrightarrow y^2\left(2t^2-7t+3\right)=0\\ \Leftrightarrow\orbr{\begin{cases}y=0\\\orbr{\begin{cases}t=3\\t=\frac{1}{2}\end{cases}}\end{cases}}\)(thử lại sẽ loại)
TH2: t=3 thay sẽ được \(\orbr{\begin{cases}x=3,y=1\\x=-3,y=-1\end{cases}\left(tm\right)}\)
TH3: t=1/2 (loại)
do olm của mk có vấn đề nên ko viết rõ được mong bạn thông cảm ạ