K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2024

\(\left(4x+2\right)\left(x^2+1\right)=0\)(1) 

Ta có: `x^2>=0` với mọi x

`=>x^2+1>=1>0` với mọi x

`=>x^2+1≠0`

\(\left(1\right)\Leftrightarrow4x+2=0\\ \Leftrightarrow4x=-2\\ \Leftrightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)

31 tháng 7 2024

`(4x + 2)(x^2 + 1) = 0`

Trường hợp 1: 

`4x + 2 = 0`

`<=> 4x = -2`

`<=> x =` \(-\dfrac{1}{2}\)

Trường hợp 2: 

`x^2 + 1 = 0`

`<=> x^2 = -1` (Không tồn tại `x`)

Vậy `x =` \(-\dfrac{1}{2}\)

1 tháng 3 2020

a) 3x(x - 1) + 2(x - 1) = 0

<=> (3x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)

Vậy S = {-2/3; 1}

b) x2 - 1 - (x + 5)(2 - x) = 0

<=> x2 - 1 - 2x + x2 - 10 + 5x = 0

<=> 2x2 + 3x - 11 = 0

<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0

<=> (x + 3/4)2 - 97/16 = 0

<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)

Vậy S = {\(\frac{\sqrt{97}-3}{4}\)\(-\frac{\sqrt{97}-3}{4}\)

d) x(2x - 3) - 4x + 6 = 0

<=> x(2x - 3) - 2(2x - 3) = 0

<=> (x - 2)(2x - 3) = 0

<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

Vậy  S = {2; 3/2}

e)  x3 - 1 = x(x - 1)

<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0

<=> (x - 1)(x2 + x +  1 - x) = 0

<=> (x - 1)(x2 + 1) = 0

<=> x - 1 = 0

<=> x = 1

Vậy S = {1}

f) (2x - 5)2 - x2 - 4x - 4 = 0

<=> (2x - 5)2 - (x + 2)2 = 0

<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

<=> (x - 7)(3x - 3) = 0

<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy S = {7; 1}

h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0

<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0

<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0

<=> (x - 2)(x - 6) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

Vậy S = {2; 6}

\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)

\(3x.x-3x+2x-2=0\)

\(2x-2=0\)

\(2x=2\)

\(x=1\)

6 tháng 10 2019

Park Ji Woo ghi rõ đề ra bn ơi

6 tháng 10 2019

GIẢI CÁC PHƯƠNG TRÌNH NHƯ KIỂU TÌM X Á

3 tháng 3 2020

a) \(2x^3+3x^2-8x-12=0\)

\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)

\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\)\(x-2=0\)

hoặc \(x+2=0\)

hoặc \(2x+3=0\)

\(\Leftrightarrow\)\(x=2\)

hoặc \(x=-2\)

hoặc \(x=-\frac{3}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)

b) \(x^3-4x^2-x+4=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(x-4=0\)

hoặc \(x-1=0\)

hoặc \(x+1=0\)

\(\Leftrightarrow\)\(x=4\)

hoặc \(x=1\)

hoặc \(x=-1\)

Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)

c) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

d) \(x^4-3x^3+3x^2-x=0\)

\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)^3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)

e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)

g) \(x^3+3x^2+3x+1=4x+4\)

\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)  hoặc   \(x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)

b) \(x^3-4x^2-x+4=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)

c) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )

14 tháng 8 2015

cái bài này tìm nghiệm là ra mà bạn

31 tháng 12 2016

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi  

21 tháng 10 2018

a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)

\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-4x+1=x+1\)

\(\Leftrightarrow x^2-4x-x=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện

Vậy x=0 hoặc x=5

2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)

Đk: x>=3 hoặc x=1

pt  (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )

<=> x-1=0

<=> x=1 ( thỏa mãn điều kiện)

a, \(x^2-49x-50=0\Leftrightarrow\left(x-1\right)\left(x+50\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-50\end{cases}}\)

b, \(3x^2-7x-10=0\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\Leftrightarrow\left(3x-10\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=10\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}}\)

c, \(x^2-4x-5=0\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

d, \(x^2+2x-3=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

e, \(x^2+2020x-2021=0\)

=> vô nghiệm 

f, \(x^2+9x-10=0\Leftrightarrow\left(x-1\right)\left(x+10\right)\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}}\)

g, \(-5x^2+4x+1=0\Leftrightarrow5x^2+x-5x-1=0\Leftrightarrow x\left(5x+1\right)-1\left(5x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)

h, \(4x^2+3x-7=0\Leftrightarrow x\left(4x+7\right)-1\left(4x+7\right)=0\Leftrightarrow\left(x-1\right)\left(4x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{7}{4}\end{cases}}\)

21 tháng 4 2020

a) (x-50)(x+1)=0

<=>x=50 hoặc x=1

b) (x+1)(x-10/3)=0

<=>x=-1 hoặc x=10/3

c)  (x-5)(x+1)=0

<=>x=5 hoặc x=-1

d)  (x+3)(x-1)=0

<=>x=-3 hoặc x=1

e) (x-1)(x+2021)=0

<=>x=1 hoặc x=-2021

f) (x-1)(x+10)=0

<=> x=1 hoặc x=-10

g) (x+1/5)(x-1)=0

<=>x=1 hoặc x=-1/5

h) (x-1)(x+7/4)=0

<=> x=1 hoặc x=-7/4

Học tốt. tk vs ạ