K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

a)  3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1):

3 x 2   –   7 x   –   10   =   0

Có a = 3; b = -7; c = -10

⇒ a – b + c = 0

⇒ (1) có hai nghiệm  x 1   =   - 1   v à   x 2   =   - c / a   =   10 / 3 .

+ Giải (2):

2 x 2   +   ( 1   -   √ 5 ) x   +   √ 5   -   3   =   0

Có a = 2; b = 1 - √5; c = √5 - 3

⇒ a + b + c = 0

⇒ (2) có hai nghiệm:

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): x 2   –   2   =   0   ⇔   x 2   =   2  ⇔ x = √2 hoặc x = -√2.

+ Giải (2): x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm S = {-3; -√2; √2}

c)

x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 0,6x + 1 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

x 2   –   x   –   1   =   0

Có a = 1; b = -1; c = -1

⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . ( - 1 )   =   5   >   0

⇒ (2) có hai nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)

x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0

⇔ (3x-10).x.(2x+1)=0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 3x – 10 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

27 tháng 4 2020

Câu a ) 

\(2x^4+3x^2-2=0\left(1\right)\)

Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:

\(2t^2+3t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)

\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)

Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)

Vậy tập nghiệm của phương trình là  \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)

 
27 tháng 4 2020

Câu b ) 

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)

\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)

\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)

\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)

\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)

\(\Leftrightarrow3m^2+6m+3=16m\)

\(\Leftrightarrow3m^2-10m+3=0\)

\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)

a: Khi m=1 thì (1) sẽ là:

x^2-x-8=0

=>\(x=\dfrac{1\pm\sqrt{33}}{2}\)

b: 3x1^2+3x2^2+2x1x2=5

=>3[(x1+x2)^2-2x1x2]+2x1x2=5

=>3[(2m-1)^2-2(-8m)]+2(-8m)=5

=>3(4m^2-4m+1+16m)-16m=5

=>12m^2+36m+3-16m-5=0

=>12m^2+20m-2=0

=>\(m=\dfrac{-5\pm\sqrt{31}}{6}\)

13 tháng 4 2017

Phương trình (*) có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có: a = 3; b’ = -2√2; c = 2;

Δ ’   =   b ’ 2   –   a c   =   ( - 2 √ 2 ) 2   –   3 . 2   =   2   >   0

Vì Δ’ > 0 nên phương trình có hai nghiệm phân biệt là:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có a = 3; b’ = -1; c = 1;

Δ ’   =   b ’ 2   –   a c   =   ( - 1 ) 2   –   3 . 1   =   - 2   <   0

Vậy phương trình vô nghiệm.

d) 

0 , 5 x ( x   +   1 )   =   ( x   –   1 ) 2       ⇔   0 , 5 x 2   +   0 , 5 x   =   x 2   –   2 x   +   1     ⇔   x 2   –   2 x   +   1   –   0 , 5 x 2   –   0 , 5 x   =   0     ⇔   0 , 5 x 2   –   2 , 5 x   +   1   =   0     ⇔   x 2   –   5 x   +   2   =   0

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)

\(\Leftrightarrow-x^2-6x+3x+18-18=0\)

\(\Leftrightarrow-x\left(x+3\right)=0\)

=>x=0 hoặc x=-3

b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)

c: =>x(3x-5)=0

=>x=0 hoặc x=5/3

d: =>(x-2)(x+2)=0

=>x=2 hoặc x=-2

NV
13 tháng 5 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-3\end{matrix}\right.\)

\(x_1^3x_2+x_2^3x_1=x_1x_2\left(x^2_1+x_2^2\right)=x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)

\(=-3.\left(1^2-2.\left(-3\right)\right)=-21\)

13 tháng 5 2021

`Delta=1+12=13>0`
`=>` pt có 2 nghiệm pb
Áp dụng vi-ét:`x_1+x_2=1,x1.x_2=-3`
`=>x_1^3x_2+x_1x_2^3`
`==x_1.x_2(x_1^2+x_2)^2`
=-3[(x_1+x_2)^2-2.x_1.x_2]`
`=-3(1+6(`
`=-3.7`
`=-21`