\(^2\)+9(x-1)=3(x\(^2\)+x-3)

g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\ \Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\\ \Leftrightarrow-6x+12=0\\ \Leftrightarrow x=2\)

18 tháng 3 2022

\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)

\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-2x+9=0\)

\(\Leftrightarrow-6x-6=0\)

\(\Leftrightarrow-6\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm là \(-1\)

7 tháng 4 2019

\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{9}{x^2-9}\)

\(\Leftrightarrow\)\(\frac{\left(x+3\right).\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)\(-\)\(\frac{\left(x-3\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}\)\(=\frac{9}{\left(x+3\right).\left(x-3\right)}\)

\(\Leftrightarrow\) \(\left(x+3\right)^2-\left(x-3\right)^2=9\)

\(\Leftrightarrow\)\(x^2+6x+9-x^2+6x-9=9\)

\(\Leftrightarrow\) \(12x=9\)

\(\Leftrightarrow\)\(x=\frac{3}{4}\)

Vậy phương trình có nghiệm là: \(x=\frac{3}{4}\)

21 tháng 6 2020

Có 4 TH xảy ra trong phương trình này:

TH1 và TH2: |x - 3| = 7

TH1: x - 3 = 7 

 <=> x = 7 + 3 = 10

TH2: -x + 3 = 7

 <=> -x = 7 - 3 = -4

TH3 và TH4: |x + 2| = 7

TH3: x + 2 = 7

<=> x = 7 - 2 = 5

TH4: -x + 2 = 7

<=> -x = 7 - 2 = -5

Vậy x thuộc { 10; -4; 5; -5}

Chúc học tốt!

21 tháng 6 2020

|x-3|+|x-2|=7 (1)

Bang xac dinh
x -2 3 
 x-3  _        |    +  0  +
 x+2  _        0    _  |   _

Neu x<-2 thi (1) <=>3-x-x-2=7
                          <=>-2x=6

                          <=>x=-3

Neu -2 =<x=<3 thi (1)<=>3-x+x+2=7

                                  <=>5=7(vo li)

 Neu x>3 thi (1)<=>x-3+x+2=7

                         <=>2x=8

                          <=>x=4(t/m)

Vay...

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)

\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)

\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)

Vậy pt có nghiệm là (x;y) = (0;1/10) 

tự thực hiện tiếp vs dấu - , kl TH1 thoi 

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

14 tháng 2 2020

Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)

Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)

Ta có:

\(u^2+6v=7uv\)

\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)

Xét nốt nha!

14 tháng 2 2020

Câu b là phân tích các kiểu ra dạng như thế này nhé !

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok