\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....

19 tháng 8 2020

c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)

\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)

\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)

d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)

\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)

16 tháng 7 2018

1, bình phương x rồi rút gọn ta được

\(x^2=3\sqrt{10}-4\sqrt{2}-2\sqrt{2}.\sqrt{2\left(\sqrt{5}-1\right)\left(\sqrt{5}-2\right)}\)

=\(3\sqrt{10}-4\sqrt{2}-2\sqrt{2}.\sqrt{14-6\sqrt{5}}\)

=\(3\sqrt{10}-4\sqrt{2}-2\sqrt{2}.\sqrt{\left(3-\sqrt{5}\right)^2}\)

=\(3\sqrt{10}-4\sqrt{2}-2\sqrt{2}\left(3-\sqrt{5}\right)\)

=\(5\sqrt{10}-10\sqrt{2}>0\)

=>x=\(\sqrt{5\sqrt{10}-10\sqrt{2}}\)

28 tháng 5 2020

ĐKXĐ : \(x\ge1\)

PT đã cho tương đương với :

\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)

\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)

Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)

Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

từ đó dễ dàng tìm được x

29 tháng 5 2020

Làm tiếp bài của @Thanh Tùng DZ

Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)

Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)

\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)

\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)