Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Pt \(\Leftrightarrow3.cos4x-\left(cos6x+1\right)=1\)
\(\Leftrightarrow3cos4x-cos6x-2=0\)
Đặt \(t=2x\)
Pttt:\(3cos2t-cos3t-2=0\)
\(\Leftrightarrow3\left(2cos^2t-1\right)-\left(4cos^3t-3cost\right)-2=0\)
\(\Leftrightarrow-4cos^3t+6cos^2t+3cost-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=1\\cost=\dfrac{1+\sqrt{21}}{4}\left(vn\right)\\cost=\dfrac{1-\sqrt{21}}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=k2\pi\\t=\pm arc.cos\left(\dfrac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\dfrac{1}{2}.arccos\left(\dfrac{1-\sqrt{21}}{4}\right)+k\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a2) \(2cos2x-8cosx+7=\dfrac{1}{cosx}\) (ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\))
\(\Leftrightarrow2.\left(2cos^2x-1\right)-8cosx+7=\dfrac{1}{cosx}\)
\(\Leftrightarrow2.\left(2cos^2x-1\right)cosx-8cos^2x+7cosx=1\)
\(\Leftrightarrow4cos^3x-8cos^2x+5cosx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) (tm) (\(k\in Z\))
Vậy...
a3) Đk: \(x\ne-\dfrac{\pi}{4}+k\pi;x\ne\dfrac{\pi}{2}+k\pi\)
Pt \(\Leftrightarrow\dfrac{\left(1+sinx+1-2sin^2x\right).\dfrac{1}{\sqrt{2}}\left(sinx+cosx\right)}{1+\dfrac{sinx}{cosx}}=\dfrac{1}{\sqrt{2}}cosx\)
\(\Leftrightarrow\dfrac{\left(-2sin^2x+sinx+2\right).\left(sinx+cosx\right)cosx}{cosx+sinx}=cosx\)
\(\Leftrightarrow\left(2+sinx-2sin^2x\right).cosx=cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\2+sinx-2sin^2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a4) Pt \(\Leftrightarrow9sinx+6cosx-6sinx.cosx+1-2sin^2x=8\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sin^2x-9sinx+7\right)=0\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sinx-7\right)\left(sinx-1\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(6cosx+2sinx+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\6cosx+2sinx=7\left(vn\right)\end{matrix}\right.\) (\(6cosx+2sinx=7\) vô nghiệm do \(6^2+2^2< 7^2\))
\(\Rightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi;k\in Z\)
Vậy...
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow sin4x-cos4x=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\)
d/
Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)
ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)
\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)
\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)
\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)
\(\Leftrightarrow2cos^22x-2cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)
Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)
`cos 2x+\sqrt{3}sin 2x+\sqrt{3}sin x-cos x=4`
`<=>1/2 cos 2x+\sqrt{3}/2 sin 2x+\sqrt{3}/2 sin x-1/2 cos x=2`
`<=>sin(\pi/6 +2x)+sin(x-\pi/6)=2`
Vì `-1 <= sin (\pi/6 +2x) <= 1`
`-1 <= sin (x-\pi/6) <= 1`
Dấu "`=`" xảy ra `<=>{(sin(\pi/6+2x)=1),(sin(x-\pi/6)=1):}`
`<=>{(\pi/6+2x=\pi/2+k2\pi),(x-\pi/6=\pi/2+k2\pi):}`
`<=>{(x=\pi/6+k\pi),(x=[2\pi]/3+k2\pi):}` `(k in ZZ)`
Phương trình đã cho tương đương với :
\(1+\frac{\sqrt{3}}{2}\sin2x-\frac{1}{2}\cos2x-3\left(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x\right)=0\)
\(\Leftrightarrow1-\cos\left(2x+\frac{\pi}{3}\right)-3\sin\left(x+\frac{\pi}{6}\right)=0\)
\(2\sin^2\left(x+\frac{\pi}{6}\right)-2\sin\left(x+\frac{\pi}{6}\right)=0\Leftrightarrow\begin{cases}\sin\left(x+\frac{\pi}{6}\right)=0\\\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\end{cases}\) (Loại \(\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\))
Với \(\sin\left(x+\frac{\pi}{6}\right)=0\Rightarrow x=-\frac{\pi}{6}+k\pi,k\in Z\)
a.
\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)