K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

Ta có : \(2x^4-5x^3-27x^2+25x+50=0\)

\(\Leftrightarrow2x^4+2x^3-10x^2-7x^3-7x^2+35x-10x^2-10x+50=0\)

\(\Leftrightarrow2x^2\left(x^2+x-5\right)-7x\left(x^2+x-5\right)-10\left(x^2+x-5\right)=0\)

\(\Leftrightarrow\left(x^2+x-5\right)\left(2x^2-7x-10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x-5=0\\2x^2-7x-10=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1\pm\sqrt{21}}{2}\\x=\frac{7\pm\sqrt{129}}{4}\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-1-\sqrt{21}}{2};\frac{7-\sqrt{129}}{4};\frac{-1+\sqrt{21}}{2};\frac{7+\sqrt{129}}{4}\right\}\)

1 tháng 11 2021

 bn ơi

12 tháng 7 2019

#)Sửa đề : x4+2x3+5x2+4x-12=0

#)Giải :

\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Giải phương trình:

x4+2x3+5x2+4x+4=0

_Sửa đề bài :

Giải phương trình,x^4 + 2x^3 + 5x^2 + 4x - 12 = 0,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

4 tháng 4 2017

a) x4 – 5x2+ 4 = 0.

Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4

Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.

b) 2x4 – 3x2 – 2 = 0.

Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)

Vậy: x1 = √2; x2 = -√2

c) 3x4 + 10x2 + 3 = 0.

Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)

Phương trình vô nghiệm.



4 tháng 4 2017

a) x4 – 5x2+ 4 = 0.

Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4

Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.

b) 2x4 – 3x2 – 2 = 0.

Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)

Vậy: x1 = √2; x2 = -√2

c) 3x4 + 10x2 + 3 = 0.

Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)

Phương trình vô nghiệm.

nhớ like

5 tháng 9 2017

bài này mình biết nè 

với x thỏa mãn đk thì ta có pt

<=> \(\sqrt[3]{25x^4\left(2x^2+9\right)}=4x^2+3< =>\sqrt[3]{5x^2.5x^2\left(2x^2+9\right)}=4x^2+3\)

Áp dụng bđt cố si ta có 

\(\sqrt[3]{5x^2.5x^2\left(2x^2+9\right)}\le\frac{12x^2+9}{3}=4x^2+3\)

đến đây thì dễ rồi cậu tự tìm dấu = xảy ra nhé

2 tháng 2 2018

a, 2x2+5x-3=0 

<=> 2x2+6x-x-3=0

<=> 2x(x+3)-(x+3)=0

<=> (x+3)(2x-1)=0

\(=>\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}=>\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)

Vậy...

2 tháng 2 2018

a, 2x2+5x-3=0

<=> 2x2+6x-x-3=0

<=> 2x(x+3)-(x+3)=0

<=>(x+3)(2x-1)=0

<=> \(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)

8 tháng 2 2018

\(4x^4-3x^2-1=0\)

\(\Leftrightarrow\left(4x^4-4x^2\right)+\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(4x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(4x^2+1\right)=0\)

\(2x^2-5x+2=0\)

\(\Leftrightarrow\left(2x^2-4x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\)

Mình giải phần mấu chốt rồi đó

Còn lại tự giải nhé

8 tháng 2 2018

CÂU 2:

       \(2x^2-5x+2=0\)

\(\Leftrightarrow\)\(2x^2-4x-x+2=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0,5\\x=2\end{cases}}\)

Vậy...