Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. `|x + 1| + |2x - 3| = |3x - 2|`
Ta có: \(\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left|3x-2\right|=\left|3x-2\right|\) (luôn đúng với mọi x)
Vậy phương trình có vô số nghiệm.
x-5=3-x
<=> x+x=3+5
<=> 2x=8
<=>x=4
Vậy tập nghiệm của pt là S={4}
a) Ta có :
\(\left|\frac{3}{4}x-4\right|\ge0\)
\(\left|3x+5\right|\ge0\)
\(\Rightarrow\left|\frac{3}{4}x-4\right|+\left|3x+5\right|\ge0\)
Mà : \(\left|\frac{3}{4}x-4\right|+\left|3x+5\right|=0\) (đề bài)
\(\Rightarrow\hept{\begin{cases}\frac{3}{4}x-4=0\\3x+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{3}\\x=-\frac{5}{3}\end{cases}}\)
Vì trong một phương trình không thể cùng có 2 giá trị
=> Không có giá trị x thõa mãn đề bài
(x + 1)(x + 2)(x + 3) = x3 - 1
=> x3 + 6x2 + 11x + 6 - x3 + 1 = 0
=> 6x2 + 11x + 7 = 0
Vì 6x2 + 11x + 7 > 0 => vô nghiệm
Vậy \(x\in\phi\)
#)Thắc mắc :
Mk k có nhớ là lớp 7 học toán về giải phương trình nhỉ ???
\(2x\left(x^2+2\right)=\left(x-3\right)\left(x^2+2\right)\)
\(\Leftrightarrow2x\left(x^2+2\right)-\left(x-3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(2x-x+3\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x=-3\end{cases}}\)
Vậy....
\(\frac{2}{3}x-\frac{5}{4}=\frac{7}{6}-\frac{1}{2}x\)
\(\frac{2}{3}x+\frac{1}{2}x=\frac{7}{6}+\frac{5}{4}\)
\(\frac{7}{6}x=\frac{29}{12}\)
\(x=\frac{29}{12}:\frac{7}{6}\)
\(x=\frac{29}{14}\)
Ta có: \(\frac{2}{3}x-\frac{5}{4}=\frac{7}{6}-\frac{1}{2}x\)
\(\Rightarrow\frac{2}{3}x-\frac{1}{2}x=\frac{5}{4}+\frac{7}{6}\)
\(\Rightarrow\frac{1}{6}x=\frac{48}{24}=2\)
\(\Rightarrow x=2:\frac{1}{6}=12\)
Khi đó 2x chẵn, còn 3x,5x,11x đều lẻ
=>VT chẵn, VP lẻ -> vô nghiệm
Khi đó VT=20+30+50=3; VT=110=1 -> vô nghiệm
Khi đó 2x>3x>5x>11x -> vô nghiệm
Vậy pt đã cho không có nghiệm nguyên
Ta có :
\(11^x=5^x+3^x+2^x\)
\(\Rightarrow2^x+3^x+5^x=5^x+3^x+2^x\)
\(\Rightarrow2^x+3^x+5^x=11^x\)
\(\Rightarrow-11^x+5^x+3^x+2^x=0\)
\(\Rightarrow-\left(11^x-5^x-3^x-2^x\right)=0\)
\(\Rightarrow11^x-5^x-3^x-2^x=0\)
=> Tiếp đê :)