Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi phương trình về dạng :
\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)
Nhận thấy \(x=1\) là nghiệm
Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)
Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.
Đáp số : x=1
Phương trình đã cho tương đương với
\(2^{5.\frac{x+5}{x-7}}=2^{-2}.5^{3.\frac{x+17}{x-3}}\) \(\Leftrightarrow2^{\frac{7x+11}{x-7}}=5^{\frac{3x+51}{x-3}}\)
Lấy Logarit cơ số 2 hai vế, ta có :
\(\frac{7x+11}{x-7}=\frac{3x+51}{x-3}\log_25\)
\(\Leftrightarrow\begin{cases}\left(7-3\log_25\right)x^2-2\left(5+15\log_2x\right)x-\left(33-357\log_25\right)=0\\x\ne7,x\ne3\end{cases}\)
Phương trình bậc 2 trên có :
\(\Delta'=1296\log_2^2-2448\log_25+256>0\)
Nên có nghiệm \(x=\frac{5+15\log_25\pm\sqrt{\Delta'}}{7-3\log_25}\)
Hai nghiệm này đều thỏa mãn vì chúng đều khác 7 và 3
Đổi về Logarit cơ số 10, ta có :
\(\frac{lgx}{lg\frac{1}{5}}+\frac{lgx}{lg4}\ge1\Leftrightarrow\frac{lg5-lg4}{lg5.lg4}.lgx\ge1\)
Từ đó suy ra
\(x\ge10^{\frac{lg5.lg4}{lg5-lg4}}\)
a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :
\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)
Ta có :
\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x
Do đó \(f\left(x\right)\) đồng biến trên R
Mặt khác
f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình
b) Phương trình tương đương với
\(2^x\left(2-2^x\right)=x-1\)
Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình
- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)< \(x-1\)
phương trình vô nghiệm
- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)> \(x-1\)
phương trình đã cho có 1 nghiệm duy nhất là x=1
\(\left(\frac{3}{4}+\frac{1}{2}\right)\cdot\frac{5}{7}\)
=\(\frac{5}{4}\cdot\frac{5}{7}\)
=\(\frac{25}{28}\)
\(y'\left(x\right)=x^2+2\left(m^2-m+2\right)x+3m^2+1\) \(\Rightarrow y''\left(x\right)=2x+2\left(m^2-m+2\right)\)
Để hàm số đạt cực tiểu tại x=-2 thì \(\begin{cases}y'\left(-2\right)=0\\y''\left(-2\right)=0\end{cases}\)\(\Rightarrow\begin{cases}-m^2+4m-3=0\\m^2-m>0\end{cases}\)
\(\Rightarrow\begin{cases}\left(m-1\right)\left(m-3\right)=0\\m\left(m-1\right)>0\end{cases}\)
\(\Rightarrow m=3\)
Lấy logarit cơ số 10 hai vế ta có :
\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)
\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)
\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)
\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)
\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)
Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)